
CME-11E9-EVBU Lab Manual

1

Table of Contents
1.0 Overview... 4
1.1 Introduction ... 4
1.2 EVBU Features and Specifications .. 4
2.0 Hardware... 6
2.1 EVBU Hardware ... 6
2.2 HC11 MCU ... 6
2.3 Interrupts and RESET.. 6

2.3.1 Nonmaskable Interrupts ... 7
2.3.2 Maskable Interrupts ... 8

2.3.2.1 SEI... 8
2.3.2.2 CLI .. 8
2.3.2.3 RTI .. 8

2.4 HC11 Register ... 9
2.4.1 Accumulators A, B, and D ... 10
2.4.2 Index Register X (IX) .. 10
2.4.3 Index Register Y (IY) .. 10
2.4.4 Stack Pointer (SP).. 10
2.4.5 Program Counter (PC) ... 11
2.4.6 Condition Code Register (CCR)... 11

2.4.6.1 Carry/Borrow (C)... 11
2.4.6.2 Overflow (V) ... 12
2.4.6.3 Zero (Z) ... 12
2.4.6.4 Negative (N) .. 12
2.4.6.5 Interrupt Mask (I)... 13
2.4.6.6 Half Carry (H).. 13
2.4.6.7 X Interrupt Mask (X) ... 13
2.4.6.8 Stop Disable (S) ... 14

2.5 Data Types .. 14
2.6 Opcodes .. 14

2.6.1 Prebytes ... 14
2.7 Memory... 15

2.7.1 Accumulator and Memory Instructions .. 15
2.7.1.1 Loads, Stores, and Transfers... 15
2.7.1.2 Arithmetic Operations .. 15
2.7.1.3 Multiply and Divide ... 16
2.7.1.4 Logical Operations... 16
2.7.1.5 Data Testing and Manipulation... 16
2.7.1.6 Shifts and Rotates .. 17

2.8 Addressing Modes ... 17
2.8.1 Immediate.. 17
2.8.2 Direct... 17
2.8.3 Extended.. 17
2.8.4 Indexed.. 18
2.8.5 Inherent ... 18
2.8.6 Relative ... 18

CME-11E9-EVBU Lab Manual

2

2.9 Operating Modes ... 18
2.9.1 Single Chip Mode .. 19
2.9.2 Expanded Mode... 19
2.9.3 Bootstrap Mode ... 19
2.9.4 Test Mode.. 20

2.10 Input/Output (I/O) Ports .. 20
2.10.1 Port A .. 20
2.10.2 Port B .. 21
2.10.3 Port C .. 21
2.10.4 Port D .. 22
2.10.5 Port E .. 23

2.11 EVBU Ports and Connectors.. 23
2.11.1 COM1 Serial Port .. 23
2.11.2 SS:Keypad Port ... 24
2.11.3 MCU Port .. 24
2.11.4 Bus Port... 25
2.11.5 LCD Port ... 26
2.11.6 P4/EVBU Connector.. 27

2.12 Expanded Bus.. 28
2.12.1 Memory Map Logic ... 29
2.12.2 LCD Logic Control .. 30
2.12.3 Chip Select .. 30

2.13 Miscellaneous Circuits... 31
2.13.1 RS232 Level Translator ... 31
2.13.2 VPP Connector .. 31
2.13.3 PWR Terminal Block... 31

2.14 Option Jumpers.. 31
2.14.1 Programming Enable Jumpers.. 31
2.14.2 TRACE/PROG Jumper .. 32
2.14.3 SYNC Jumper.. 32
2.14.4 MEM-EN Jumper .. 32

2.15 Jumper Settings Alteration... 32
2.15.1 JP3 – U5 Device Configuration.. 33
2.15.2 JP4-JP6 – U6 Device Configuration ... 33
2.15.3 JP8, JP9, WRITE_EN – U7 Device Configuration 33

3.0 Software .. 34
3.1 AxIDE... 34

3.1.1 Upload... 35
3.1.2 Build.. 35
3.1.3 Configure... 35
3.1.4 Program ... 35
3.1.5 Read .. 35

3.2 Buffalo Monitor... 36
3.2.1 Command Format .. 36

3.3 Source Code .. 37
3.3.1 Debug Mode .. 38

CME-11E9-EVBU Lab Manual

3

3.3.2 DATA.. 38
3.3.3 Stack Register .. 38

3.4 Assembly Language .. 38
3.5 Freeware Assembler .. 39

3.5.1 Introduction ... 39
3.5.2 Source Statement Format ... 39

3.5.2.1 Label Field... 39
3.5.2.2 Operation Field .. 41
3.5.2.3 Operand Field .. 41
3.5.2.4 M68HC11 Operand Syntax .. 42
3.5.2.5 Expressions.. 43
3.5.2.6 Operators ... 43
3.5.2.7 Symbols ... 43
3.5.2.8 Constants ... 44
3.5.2.9 Comment Field .. 46

3.5.3 Assembler Directives ... 46
3.5.3.1 Introduction ... 46
3.5.3.2 BSZ – Block Storage of Zeros.. 47
3.5.3.3.EQU – Equate Symbol to a Value .. 48
3.5.3.4 FCB – Form Constant Byte .. 48
3.5.3.5 FCC - Form Constant Character String... 48
3.5.3.6 FDB – Form Double Byte Constant.. 49
3.5.3.7 FILL – Fill Memory ... 49
3.5.3.8 OPT – Assembler Output Options .. 50
3.5.3.9 ORG - Set Program Counter to Origin.. 51
3.5.3.10 PAGE – Top of Page.. 51
3.5.3.11 RMB – Reserve Memory Bytes.. 51
3.5.3.12 ZMB – Zero Memory Bytes (same as BSZ) ... 51

Index... 53

CME-11E9-EVBU Lab Manual

4

1.0 Overview

1.1 Introduction

Welcome to the Axiom Manufacturing Lab Manual for the CME-11E9-EVBU.

The CME-11E9-EVBU (EVBU) is a low-cost, entry-level development system

for the MC68HC11E9 (HC11) microcontroller. The EVBU provides the HC11

single chip and expanded mode operation with the Buffalo Monitor Version 3.4 in

the internal Read Only Memory (ROM). EVBU application development is not

complicated, but students need basic knowledge of logic circuits, electronic

theory, and Microsoft Windows to fully benefit from the manual.

The Axiom Manufacturing Lab Manual supplements textbooks and does not

saturate the subject. The manual provides an understanding of the EVBU

hardware and software needed to configure, program and debug embedded

systems. This manual also provides lab experiments for the EVBU. The enclosed

CD contains manuals for the HC11.

1.2 EVBU Features and Specifications

The EVBU features:

• HC11 Central Processing Unit (CPU)
• COM1 serial port-HC11 Serial Communication Interface (SCI) port to

RS232 translator and DB9-S connector
• Three Input/Output (I/O) ports in all modes

- Port A: 3 input, 3 output, 2 I/O. Timer module interface
- Port D: 5 I/O. SCI and Serial Peripheral Interface (SPI) serial

module interface
- Port E: 8 inputs. Analog converter module interface

• Two additional I/O ports in single chip mode
- Port B: 8 outputs. High order address in expanded mode
- Port C: 8 I/O, latched port. Low order address and data in

expanded mode
• Three memory sockets, 28-pin standard

- U5: 32 Kbyte RAM
- U6: No device installed default

CME-11E9-EVBU Lab Manual

5

- U7: 8 Kbyte Electronically Erasable Programmable Read Only
Memory (EEPROM)

• Input/Output Connectors
- P4/EVBU Port: All HC11 I/O connections
- Bus.Port: HC11 Expanded Mode address and data bus
- MCU.Port: HC11 I/O ports available in all modes
- LCD.Port: LCD module connection port, expanded mode

operation
- SS:Keypad port: Keypad connection port, 4 bits of port D and port

E

Specifications

• Board size: 5.5” x 6.0”
• Power Input: +7 to +18VDC
• Current Consumption: 80ma Standard

CME-11E9-EVBU Lab Manual

6

2.0 Hardware

2.1 EVBU Hardware

The EVBU hardware processes, stores and communicates information to its

connected system, i.e. a PC, LCD, keypad, etc. The EVBU hardware contains a

microcontroller, memory and peripheral support systems. (See Section 1.2 EVBU

Features and Specifications).

2.2 HC11 MCU

A high-density CMOS device makes up the HC11. The HC11 features:

• M68HC11 CPU
• Power-saving stop and wait modes
• 512 bytes of on-chip RAM, data retained during standby
• 12 Kbytes of on-chip ROM or Erasable Programmable Read Only

Memory (EPROM)
• 512 bytes of on-chip EEPROM with erase or write protection
• Asynchronous non-return-to-zero (NRZ) SCI Serial Port
• Synchronous Serial Port (SPI)
• 8-channel, 8-bit A/D converter
• 16-bit timer system
• 8-bit pulse accumulator
• Real-time interrupt circuit
• Computer operating properly (COP) watchdog system
• 38 general-purpose input/output I/O pins

2.3 Interrupts and RESET

Interrupts allow the CPU real time process control or error handling services, and

allows the CPU to respond to a hardware or physical event when it occurs. When

an event occurs, interrupt stops the program flow and forces the CPU to respond.

The HC11 provides 21 possible interrupts, each associated with a dedicated

position in the interrupt vector table ($FFD6-$FFFF). The CPU uses the interrupt

vector table to find the correct service routine for the interrupt.

CME-11E9-EVBU Lab Manual

7

Each 16-bit entry contains the starting address for service. Proper operation calls

for the complete interrupt vector table with unused interrupt vectors set to the

RESET vector. This method provides an unscheduled interrupt recovery

mechanism that would otherwise allow unspecified code execution.

Vector Address Interrupt Source
CCR

Mask Bit
Local
Mask

FFCO, C1-FFD4, D5 Reserved --- ---
FFD6, D7 SCI Serial System

• Receive data register
• Receiver overrun
• Transmit data register empty
• Transmit complete
• Idle line detect

I
RIE
RIE
TIE
TCIE
ILIE

FFD8, D9 SPI serial transfer complete I SPIE
FFDA, DB Pulse accumulator input edge I PAII
FFDC, DD Pulse accumulator overflow I PAOVI
FFDE, DF Timer overflow I TOI
FFE0, E1 Timer input capture 4/output compare 5 I I4/O5I
FFE2, E3 Timer output compare 4 I OC41
FFE4, E5 Timer output compare 3 I OC3I
FFE6, E7 Timer output compare 2 I OC2I
FFE8, E9 Timer output compare 1 I OC1I
FFEA, EB Timer input capture 3 I IC3I
FFEC, ED Timer input capture 2 I IC2I
FFEE, EF Timer input capture 1 I IC1I
FFF0, F1 Real time interrupt I RTII
FFF2, F3 IRQ (External pin) I None
FFF4, F5 XIRQ pin X None
FFF6, F7 Software interrupt None None
FFF8, F9 Illegal opcode trap None None
FFFA, FB COP failure None NOCOP
FFFC, FD Clock monitor fail None CME
FFFE, FF RESET None None

Figure 2.3 Interrupt Vector Table

2.3.1 Nonmaskable Interrupts

Nonmaskable interrupts are interrupts that are always enabled or that

cannot be disabled after being enabled. Nonmaskable interrupts have the

highest priority, and always service RESET first. Nonmaskable interrupts

occur once enabled and cannot be disabled by software control. The

CME-11E9-EVBU Lab Manual

8

nonmaskable interrupts are XIRQ, SWI, TRAP, COP, CLOCK FAIL, and

RESET.

2.3.2 Maskable Interrupts

When necessary the HC11 internal peripherals use the maskable interrupt.

Maskable interrupts may prioritize events. As a result if two or more

interrupts occur simultaneously, the programmer can prioritize service.

Maskable interrupts may enable or disable under software control, so

unnecessary service can discontinue.

Special instructions globally enable or disable maskable interrupts. The

instructions include:

• Set Interrupt Mask Bit (SEI)
• Clear Interrupt Mask Bit (CLI)
• Return from Interrupt (RTI)

2.3.2.1 SEI

The SEI instruction disables all maskable interrupts by setting the I

bit in the Condition Code Register (CCR). (See Section 2.4 HC11

Registers.) If the I bit sets, maskable interrupts do not occur or

cause CPU action.

2.3.2.2 CLI

The CLI instruction enables all maskable interrupts that are

enabled by their associated peripheral interrupt mask bit.

Maskable interrupts only occur when the CCR I bit is clear.

2.3.2.3 RTI

The special case RTI instruction is the last instruction an interrupt

service must execute. After servicing an interrupt, execute RTI

instructions. The RTI instruction enables interrupts while the CPU

CME-11E9-EVBU Lab Manual

9

returns to normal program flow after service. Registers return to

their former values. The I bit returns to 0.

2.4 HC11 Register

The HC11 CPU contains:

• Two 8-bit (byte size) A and B accumulators or 16-bit Accumulator D
• Index Registers X and Y: 16-bit
• Stack Pointer: 16-bit
• Program Counter: 16-bit
• Condition Code Register, 8-bit, with five codes: C, V, Z, N, and H.
• Interrupt Masking bits: IRQ and XIRQ
• Stop Disable: S

7 A 0 7 B 0
D
IX
IY
SP
PC
7 0

S X H I N Z V C

Accumulator A and B or D

Index Register X
Index Register Y
Stack Pointer
Program Counter

Condition Codes

Stop Disable

X-Interrupt Mask

Half Carry

Interrupt Mask

Negative

Zero

Overflow

Carry/Borrow

Figure 2.4 HC11 Register

CME-11E9-EVBU Lab Manual

10

2.4.1 Accumulators A, B, and D

The general-purpose accumulators A and B hold operands and results of

arithmetic calculations and data manipulations. In some instances the

accumulators work as a single double-byte Accumulator D. Most

operations can use accumulator A and B interchangeably.

The exceptions are:

• The Add Accumulator B to X (ABX) and Add Accumulator B to Y
(ABY) instructions add the contents of accumulator B to Index
register X or Y.

• No Transfer A to CCR (TAP) or Transfer CCR to A (TPA)
instructions exist to transfer data from between accumulator B and
the condition code register.

• Unlike in accumulator A, there is no decimal adjustment
accumulator (DAA) instruction in accumulator B for binary-coded
decimal (BCD) arithmetic operations.

• Add, subtract and compare instructions involving both accumulator
A and B operate in only one direction.

2.4.2 Index Register X (IX)

The 16-bit IX register supplies a 16-bit indexing value that can be added

to the 8-bit offset in an instruction to create an operational address. The

register may also be used as a counter or for temporary storage.

2.4.3 Index Register Y (IY)

The 16-bit IY register supplies an indexing function similar to the IX

register. The IY register requires an extra machine code byte and an

additional execution time cycle.

2.4.4 Stack Pointer (SP)

The stack pointer provides the CPU with temporary data memory space.

It is a critical register for CPU operation and must be located with a valid

RAM type memory address. When a byte enters the stack, the SP

decreases. When a byte exits the stack, the SP increases. The stack is

CME-11E9-EVBU Lab Manual

11

automatically applied by the CPU to store the program counter and/or

registers for subroutines or interrupt services.

The M68HC11E Family Technical Data Manual, Section 3.3.4 Stack

Pointer (SP), located on the 68HC11 Development Board CD, provides

more information about the stack pointer.

2.4.5 Program Counter (PC)

The program counter points to the next executable instruction. In normal

modes a CPU RESET initializes the PC to the RESET vector provided at

address $FFFE/F. Program counter operation will then provide the CPU

with the location of the next instruction to be executed.

2.4.6 Condition Code Register (CCR)

The 8-bit condition code register contains five condition code indicators,

two interrupt masking bits, and a stop disable bit.

2.4.6.1 Carry/Borrow (C)

The C bit indicates that an addition overflow or subtraction

underflow occurred. The C bit also operates as an error flag during

multiplication and division operations.

Shift and rotate instructions operate with and through the C bit to

facilitate multiple word shift operations. By setting or clearing the

C bit, the programmer controls the information into the operand.

The arithmetic shift right (ASR) instruction maintains the most

significant bit’s (MSB) original value, which facilitates the two’s-

complement (signed) number manipulation.

CME-11E9-EVBU Lab Manual

12

2.4.6.2 Overflow (V)

The V bit sets only if a two’s-complement overflow occurs.

Otherwise V bit is cleared. The LDAA and STAA instructions

automatically set or clear the V bit.

2.4.6.3 Zero (Z)

The Z bit sets when all bits of an arithmetic, logic or data operation

result in 0. An accumulator instruction, such as CLRB, sets Z bit

due to the fact that the contents are equal to zero. Otherwise Z bit

is cleared. The instruction LDAA#$80 clears the Z bit due to the

fact that contents are not equal to zero.

Compare instructions perform an internal implied subtraction, and

condition codes reflect the subtraction results. The Increment

Index Register (INX), Decrement Index Register X (DEX),

Increment Index Register Y (INY), and Decrement Index Register

(DEY) operations affect only the Z bit. Each operation causes the

particular index register to increase or decrease by 1. When these

operations occur only = and ≠ 0 may be determined.

2.4.6.4 Negative (N)

The N bit reflects the state of MSB. The N bit sets when an

arithmetic, logic or data operation returns negative results, i.e.

MSB=1. Assigning an often-tested register or memory location

MSB as a flag bit provides a method to test the N bit.

The LDAA and STAA instructions automatically set or clear the N

bit. The instruction LDAA#$80 sets N. Otherwise N is cleared.

Accumulator code CLRB clears the N bit.

CME-11E9-EVBU Lab Manual

13

2.4.6.5 Interrupt Mask (I)

The global mask I bit disables maskable interrupt sources. When

an interrupt occurs, the I bit automatically sets after the registers

are stacked but before fetching the interrupt vector. While set, I bit

interrupts can become pending and are remembered, but CPU

operation continues uninterrupted until the I bit clears. After any

RESET, the I bit sets by default. Software instruction clears the I

bit.

2.4.6.6 Half Carry (H)

The H bit sets when a carry occurs between bits 3 and 4 of the

logic arithmetic unit during an Add Memory (ADD), Add

Accumulators (ABA), or Add With Carry (ADC) instruction.

Otherwise the H bit is cleared. The H bit needs no set or clear

instructions because only the Decimal Adjust A (DDA) instruction

uses the H bit to adjust BCD add or subtract operations. The H bit

is not used as a test condition.

2.4.6.7 X Interrupt Mask (X)

The X bit disables interrupts from XIRQ and is only set by

hardware (RESET or XIRQ acknowledge). When an interrupt

occurs, the X bit, along with the I bit, automatically set after the

registers are stacked but before fetching the interrupt vector. The

CPU operation continues until the X bit is cleared.

Only software instruction clears X, i.e. transfer accumulator A to

the CCR TAP instruction, where the associated bit of A is 0; or

RTI, where bit 6 of the value loaded into the CCR from the stack

has cleared.

CME-11E9-EVBU Lab Manual

14

2.4.6.8 Stop Disable (S)

The S bit allows or disallows the STOP instruction. A STOP

instruction stops the oscillator. Setting the S bit prevents a STOP

instruction from implementing a low power stop condition in the

HC11. While set, a STOP instruction is treated as a no-operation

(NOP) instruction. Processing continues to the next operation.

Although there are no set or clear instructions for the S bit, the

TAP instruction changes the S bit but reduces unwanted changes to

S. The accumulator A value at the time of executing the TAP

instruction determines whether S changes. RESET sets S.

2.5 Data Types

The M8HC11 CPU supports four data types:

• Bit data
• 8-bit and 16-bit signed and unsigned integers
• 16-bit unsigned fractions
• 16-bit addresses

2.6 Opcodes

Opcodes identify an instruction and its related addressing mode to the CPU. Each

instruction generally provides several opcodes to access a range of addressing

capabilities.

2.6.1 Prebytes

An additional byte, called a prebyte, expands the 256 8-bit binary number

opcodes. A prebyte affects certain instructions, mostly associated with

the Y register. When the prebyte is used, the prebyte precedes the opcode,

and applies only to that opcode. Opcode map prebyte codes are $18 for

page 2, $1A for page 3 and $CD for page 4.

CME-11E9-EVBU Lab Manual

15

2.7 Memory

All embedded systems are memory map dependent. The EVBU provides the

default memory internally located in the HC11 and an additional external memory

of 32K bytes of RAM and 8K bytes of EEPROM. The HC11 dictates memory

type locations in the memory map. For example, RESET VECTOR is at the fixed

address 0xFFFE, which is a primary HC11 memory requirement. As a result non-

volatile memory is applied to the 0xFFFE address, so the RESET vector will be

valid when the EVBU is powered on. The HC11 internal ROM or the external

EEPROM in the U7 socket provides EVBU RESET vector.

2.7.1 Accumulator and Memory Instructions

 Most instructions use two operands. The first operand is for the

accumulator or index register. The second is normally for an addressing

mode. (See Section 2.8, Addressing Modes.) The accumulator operands

contain six subgroups:

• Loads, stores, and transfers
• Arithmetic operations
• Multiply and divide
• Logical operations
• Data testing and manipulation
• Shifts and rotates

2.7.1.1 Loads, Stores, and Transfers

Loads, stores, and transfers manipulated data from memory and

peripherals to the CPU, or transfer CPU results to memory or I/O

devices. See the M68HC11 Reference Manual on the 68HC11 CD

for summary of store and transfer instructions.

2.7.1.2 Arithmetic Operations

• 8-bit and 16-bit operations are supported directly and
extendable to support multiple-word operands.

• Two’s-complement (signed) and binary (unsigned)
operations are supported directly.

CME-11E9-EVBU Lab Manual

16

• BCD arithmetic is supported by following normal
instruction sequences using DAA instruction, restoring
results to BCD format.

• Compare instruction perform subtract in the CPU to update
condition code bits without altering either operand.

• All other operations automatically update the condition
code bits.

See the M68HC11 Reference Manual on the 68HC11 CD for

summary of arithmetic functions.

2.7.1.3 Multiply and Divide

• 8-bit by 8-bit multiply produces a 16-bit result.
• The integer divide (IDIV) 16-bit by 16-bit divide produces

a 16-bit result with a 16-bit remainder.
• The factional divide (FDIV) divides a 16-bit numerator by

a larger 16-bit denominator and produces a 16bit result (a
binary weighted fraction between 0 and 0.99998) and a 16-
bit remainder. The FDIV also resolves an IDIV or FDIV
operation.

See the M68HC11 Reference Manual on the 68HC11 CD for

summary of multiply and divide functions.

2.7.1.4 Logical Operations

Logical instructions perform the Boolean logical operations AND,

inclusive or exclusive OR, and one’s compliment.

See the M68HC11 Reference Manual on the 68HC11 CD for

summary of logical operations.

2.7.1.5 Data Testing and Manipulation

This operand group operates on operands of a single bit or any bit

combination within any byte in the 64-K memory space.

CME-11E9-EVBU Lab Manual

17

See the M68HC11 Reference Manual on the 68HC11 CD for

summary of data testing and manipulation.

2.7.1.6 Shifts and Rotates

Shift and rotate functions involve the carry bit in the CCR in

addition to the 8-bit or 16-bit operand in the instruction, permitting

easy multiple-word operand extensions.

See the M68HC11 Reference Manual on the 68HC11 CD for

summary of shifts and rotates.

2.8 Addressing Modes

Six addressing modes are provided by the HC11:

• Immediate
• Direct
• Extended
• Indexed
• Inherent
• Relative

2.8.1 Immediate

Immediate addressing initializes a register with an immediate provided

value. The bytes immediately following the opcode (#) contain the value.

2.8.2 Direct

In the direct addressing mode, a single byte following the opcode contains

the operand address’s low-order byte. Assume $00 is the high-order byte.

This mode allows quick access to the HC11 zero page RAM memory.

2.8.3 Extended

In the extended addressing mode, two bytes following the opcode byte

contain the argument’s effective address. This mode allows access to any

location in the HC11 memory map.

CME-11E9-EVBU Lab Manual

18

2.8.4 Indexed

In the indexed addressing mode, the instruction contains an 8-bit unsigned

offset. The unsigned offset is added to the value in the IX or IY, creating

the effective address. This mode allows use of certain instructions on any

memory location or provides table lookup operations.

2.8.5 Inherent

In the inherent addressing mode, the opcode contains all the information

necessary for instruction execution. Operands use one or more CPU

registers and are not drawn from memory. The addressing mode includes

operations that use only index registers or accumulators, and control

instructions with no arguments.

2.8.6 Relative

The relative addressing mode is used only with branch operations, which

generate two machine bites, one for opcode and one for relative offset. If

the branch operation is true, an 8-bit signed offset is added to the program

counter’s contents to form the effective address branch. If the relative

branch operation is false, control proceeds to the next instruction.

2.9 Operating Modes

The HC11 provides two normal operating modes:

• Single Chip
• Expanded.

Two special modes are also provided:

• Bootstrap
• Test

The logic states of the MODA and MODB pins during RESET select one of the

four modes by determining the logic state of RBOOT, SMOD, MOA, and IRV

CME-11E9-EVBU Lab Manual

19

control bits in the highest priority interrupt (HPRIO) register. The control bits

configure the logic circuits in the HC11 hardware selection mode. After RESET

the mode selection pins do not influence the MCU operating mode.

EVBU-MODA EVBU-MODB OPERATION MODE
ON OFF Single Chip
OFF OFF Expanded
ON ON Bootstrap
OFF ON Test

Figure 2.9 EVBU Operating Mode Selection at RESET

2.9.1 Single Chip Mode

In single chip mode the HC11 accesses only on-chip memory. The mode

uses ports B and C and strobe pins A (STRA) and B (STRB) for general

purpose input/output ports. On RESET the internal ROM is enabled to

provide vectors and program memory.

2.9.2 Expanded Mode

The expanded mode allows access to external memory and peripherals.

The mode provides 64-Kbyte of external address space by using I/O ports

B and C for the address and data bus. The HC11’s internal memories and

registers take priority over the external memory.

The HC11 internal ROM may be enabled (default) or disabled by the

ROMON bit in the CONFIG REGISTER for this mode. If ROMON is

disabled, the external EEPROM (U7) must provide vectors and program

memory.

2.9.3 Bootstrap Mode

The bootstrap mode is a special mode variation of the single-chip mode.

Bootstrap mode allows special purpose programs to be entered into RAM.

CME-11E9-EVBU Lab Manual

20

When bootstrap mode is selected after RESET, a small bootstrap ROM, at

address $BF00-$BFFF, contains the bootloader program and a special set

of interrupt and RESET vectors at $BFC0-$BFFF. The bootstrap program

initializes the SCI and allows program downloading to on-chip RAM. The

downloaded program size can be as large as on-chip RAM size. The mode

is applied by AxIDE utility operations.

2.9.4 Test Mode

The test mode, a special variation of the expanded mode, allows privileged

access to internal resources. Access is available for the configuration

(CONFIG) register, programming calibration data into EEPROM, and

supporting emulation and debugging during development. This mode is

normally reserved for factory use.

2.10 Input/Output (I/O) Ports

The HC11 contains five ports: A, B, C, D, and E. Each port has a shared

function, and port pin functions are mode dependent.

Port Shared Function
Port A Timer
Port B High-order address
Port C Low-order address and data bus
Port D Serial communications interface (SCI)

Serial peripheral interface (SPI)
Port E Analog to Digital (ADC) Converter

Figure 2.10 Ports and Shared Function

2.10.1 Port A

Port A shares functions with the timer system and contains:

• Three input-only pins
• Three output-only pins
• Two bi-directional I/O pins

The Port A address is $1000.

CME-11E9-EVBU Lab Manual

21

Input/Only Output-Only Bi-directional
Read/
Write

Alternate
Function

Read/
Write

Alternate
Function

Read/
Write

Alternate
Function

Alternate
Function

PAO (0) I IC3 (0) I PA4 (4) OC4 (4) PA3 (3) I OC5 (3) I IC4 (3) I
PA1 (1) I IC2 (1) I PA5 (5) OC3 (5) PA7 (7) I PA1 (7) I
PA2 (2) I IC1 (2) I PA6 (6) OC2 (6)

And/Or
OC1

And/Or
OC1

And/Or
OC1

() = Bit I = Indeterminate after RESET

Figure 2.10.1 Port A Data Register (PORTA)

2.10.2 Port B

Port B contains eight parallel output-only pins in single chip and bootstrap

modes. Simple and full handshake input and output functions are

available in single-chip mode. In simple strobe mode, port B is a strobe

output port. Port C is a latching input port, simultaneously. In expanded

or test modes, port B pins are high-order address outputs. The address for

port B is $1004 in single chip mode. Port B register is not in the memory

map in expanded mode.

Single-Chip/Bootstrap Expanded/Test RESET
PB0 ADDR8 0
PB1 ADDR9 0
PB2 ADDR10 0
PB3 ADDR11 0
PB4 ADDR12 0
PB5 ADDR13 0
PB6 ADDR14 0
PB7 ADDR15 0

Figure 2.10.2 Port Data Register (PORTB)

2.10.3 Port C

Port C contains eight parallel I/O pins. In single-chip and bootstrap

modes, port C pins RESET to high-impedance inputs. The port C address

CME-11E9-EVBU Lab Manual

22

is $1003. In expanded and special test modes, port C pins operate as

multiplex address/data bus. The port C register address is treated as an

external memory location.

Port C provides a latched input port in single chip mode. The handshake

clearing mechanism uses the Port C Latched Register (PORTCL). Reads

of this register return the last value latched into PORTCL and clear Strobe

A flag (STAF) following a read of parallel input/output control (PIOC)

with STAF set.

Single-
Chip/Bootstrap
Address $1003

Expanded/Special
Test
Address $1003

Latched
Register
Address $1005

Data
Direction
Register
Address $1007

Bit Read/Write Read Write Read/Write Read/Write
0 PC0 ADDR0 DATA0 PLC0 DDRC0
1 PC1 ADDR1 DATA1 PLC1 DDRC1
2 PC2 ADDR2 DATA2 PLC2 DDRC2
3 PC3 ADDR3 DATA3 PLC3 DDRC3
4 PC4 ADDR4 DATA4 PLC4 DDRC4
5 PC5 ADDR5 DATA5 PLC5 DDRC5
6 PC6 ADDR6 DATA6 PLC6 DDRC6
7 PC7 ADDR7 DATA7 PLC7 DDRC7

Indeterminate after RESET

Figure 2.10.3 Port C Data, Latched, and Data Direction Register
(PORTC, PORTCL, AND DDRC)

2.10.4 Port D

In all modes port D bits [0:5] can be used for general purpose I/O or with

the SCI and SPI subsystems. During RESET port D pins PD[5:0] are

configured as high-impedance inputs (DDRD bits cleared). The port D

address is $1008.

Read/Write and Alternate function bits [0:5] are indeterminate after

RESET. Data Register bits are 0 after RESET.

CME-11E9-EVBU Lab Manual

23

Bit
Read/Write

Address $1008 Alternate Function
Data Direction Register

Address $1009
0 PD0 SCI-RxD DDRD0
1 PD1 SCI-TxD DDRD1
2 PD2 SCI-MISO DDRD2
3 PD3 SCI-MOSI DDRD3
4 PD4 SCI-SCK DDRD4
5 PD5 SCI-SS DDRD5
6 0 Unimplemented
7 0 Unimplemented

Figure 2.10.4 Port D Data Register and Data Direction Register

(PORTD AND DDRD)

2.10.5 Port E

Port E provides eight general-purpose inputs. The A/D converter system

also uses port E. Do not read PORTE during the sample portion of an A/D

conversion when some port E pins are simultaneously used for general-

purpose input and others are used for A/D conversion. The port E address

is $100A.

2.11 EVBU Ports and Connectors

The EVBU provides several ports and connectors for access to the HC11 I/O

ports, interfaces, or user expansion. Many of the HC11 I/O ports are applied for

more than one purpose. When applying the EVBU ports and connectors, the user

should be aware of HC11 mode of operation and duplicate connections to

different connectors. In simple terms—the MCU ports and bus port provide

available expanded mode access points. The P4/ EVBU connector provides

available single chip mode or all HC11 I/O access points.

2.11.1 COM1 Serial Port

The onboard COM1 serial port is a simple three-wire asynchronous serial

interface with hard-wired Clear-to-Send (CTS) and Data Terminal (DTR).

The HC11 SCI port pins PD0 and PD1 drive COM1. The two logic

CME-11E9-EVBU Lab Manual

24

signals couple to the COM1 connector through an RS232 level shifter.

COM1 is set to connect to a PC serial port with straight-through cable.

Cut-away jumpers are between the following pins:

• 4 1 and 6 (DTR/Read Data Setup Line (DSR)/DCD)
• 7 8 (RTS/CTS)

� 5 GND
9 �

� 4
8 �

� 3 RXD
7 �

� 2 TXD
6 �

� 1

Figure 2.11.1 COM1 DB9S Style Connector

2.11.2 SS:Keypad Port

The 10-pin SS:Keypad connector implements 4 bits of port D and 4 bits of

port E as a simple serial or keypad interface. The interface connects to the

SPI port on port D as a simple interface or may be implemented as a

software key scan for a passive keypad. The SS:Keypad can provide

interface for one SPI serial peripheral device. Power pins 1 and 2 are not

normally installed.

1 2 3 4 5 6 7 8 9 10
� o o o o o o o o o
+5 GND D2 D3 D4 D5 E0 E1 E2 E3

Figure 2.11.2 SS:Keypad Port Pin Connector

2.11.3 MCU Port

The MCU 26-pin port connector is a dual-row 13-pin one-inch grid pin

connector, containing input and output only and input/output lines. All

CME-11E9-EVBU Lab Manual

25

MCU ports serve dual functions with CPU peripherals and are available in

all modes.

In addition to the SCI using PD0 and PD1 to implement COM1, the HC11

SPI I/O PD[2:5] are applied to implement the SS:Keypad port. When

parallel I/O uses these port D lines, the lines are unavailable for COM1 or

SS:Keyport ports. Similarly the HC11 port E 0-3 lines are applied to the

SS:Keyport port. If a keypad is applied, those lines cannot be used for

any other purpose.

Signal Pin Pin Signal
PD0/RXD 1 2 PD1/TXD
PD2/SI 3 4 PD3/SO
PD4/SCLK 5 6 PD5/SELD
PA0/IC3 7 8 PA1/IC2
PA2/IC1 9 10 PA3/OC5/IC4
PA4/OC4 11 12 PA5/OC3
PA6/OC2 13 14 PA7/PA/OC1
PE7/AN7 15 16 PE3/AN3
PE6/AN6 17 18 PE2/AN2
PE5/AN5 19 20 PE1/AN1
PE4/AN4 21 22 PE0/AN0
VRL 23 24 VRH
GND 25 26 +5V

 Figure 2.11.3 MCU Port Connector

2.11.4 Bus Port

The bus port supports off-board parallel type peripheral devices. The 40-

pin connector brings out power (+5V), ground, as well as address, data,

and control lines. The bus port is only operational in expanded mode.

CME-11E9-EVBU Lab Manual

26

Gnd 1 2 D3

D2 3 4 D4

D1 5 6 D5

D0 7 8 D6

A0 9 10 D7

A1 11 12 A2

A10 13 14 A3

/OE 15 16 A4

A11 17 18 A5

A9 19 20 A6

A8 21 22 A7

A12 23 24 A13

/WR 25 26 /CS0

/CS1 27 28 /CS2

/CS3 29 30 /CS4

/CS5 31 32 /IRQ

+5V 33 34 /M2

R/W 35 36 /CS6

ECLK 37 38 /CS7

Gnd 39 40 /RESET

Figure 2.11.4 Bus_Port

2.11.5 LCD Port

The LCD display interface connects to the data bus. The LCD interface

supports most standard character LCD modules up to 80 characters and

provides the most common pin-out. The LCD port provides power,

ground and Vee, as well as the control signals. Addresses $B5F0 and

$B5F1 are the command register and data register, respectively, for the

LCD module attached.

CME-11E9-EVBU Lab Manual

27

The LCD Port is configured for direct cable connection to a LCD Module

with a 2 x 7 pin header on the backside of the module, opposite display.

Modules with single row connectors will require even and odd pin

swapping into the cable; i.e. 1-2 swap, 3-4 swap, 5-6 swap, 7-8 swap, 9-10

swap, 11-12 swap, 13-14 swap.

Lines Pin Pin Lines
+5V 2 1 GND
A0 4 3 Vee
/LCDCS 6 5 /RW
D1 8 7 D0
D3 10 9 D2
D5 12 11 D4
D7 14 13 D6

Figure 2.11.5a LCD Port

2.11.6 P4/EVBU Connector

The P4/EVBU connector duplicates the original Motorola EVBU board

I/O port. The connector provides access to all of the HC11 I/O ports. The

HC11 operating mode will affect availability of HC11 ports B and C as

input or output ports.

CME-11E9-EVBU Lab Manual

28

GND O O GND

VCC O O VCC

SPARE O O SPARE

SPARE O O SPARE

VRH O O VRL

PE7 O O PE3

PE6 O O PE2

PE5 O O PE1

PE4 O O PE0

PB0/A8 O O PB1/A9

PB2/A10 O O PB3/A11

PB4/A12 O O PB5/A13

PA6/A14 O O PB7/A15

PA0/IC3 O O PA1/IC2

PA2/IC1 O O PA3/OC5/IC4

PA4/OC4 O O PA5/OC3

PA6/OC2 O O PA7/OC1

NC O O PD5/SS*

PD4/SCK O O PD3/MOSI

PD2/MISO O O PD1/TXD

PD0/RXD O O IRQ*

XIRQ* O O RESET*

PC7/AD7 O O PC6/AD6

PC5/AD5 O O PC4/AD4

PC3/AD3 O O PC2/AD2

PC1/AD1 O O PC0/AD0

XTAL O � EXTAL

STRB/R/W* O O E

STRA/AS O O MODA/LTR*

MODB/VSTBY O � GND

 P4

Figure 2.11.6 EVBU Connector

2.12 Expanded Bus

In expanded mode the HC11 provides an expanded address and data bus on I/O

ports B and C. Port C’s expanded bus operation provides a multiplex low-order

address and data bus. The EVBU uses 74HC573-type logic (U3) to latch to the

CME-11E9-EVBU Lab Manual

29

low-order address. The bus provides access for the U5, U6 and U7 memory

sockets; LCD port; and chip selects CS0-CS7.

The expanded bus provides 64K bytes memory capability to the HC11. The

HC11 internal memories may be used or disabled for expanded bus operation.

When enabled, HC11 internal space takes priority over external memory or

devices. External devices will not appear in the memory map where internal

memory or registers exist. However, internal writes performed by HC11 will

appear on the external bus.

2.12.1 Memory Map Logic

A 16V8 type programmable logic device (PLD), U2, provides memory

mapping on the EVBU. The logic device decodes input signals from

address, R/W and E clock to provide M1, M2, M3, OE, WR, and P control

output signals.

M1, M2 and M3 provide memory selects to U5, U6 and U7 memory

sockets, respectfully. The OE and WR signals provide the valid data bus

with direction strobes to peripheral and memory devices attached to the

expanded bus. The P signal provides peripheral chip select CS0-CS7

address range. The EVBU REV.D provides a MEM_EN option to disable

all external chip selects, allowing true single-chip mode port C operation,

without conflicting with an installed memory device.

Chip Range Memory Select
U5 $0000-7FFF M1
U6 $8000-CFFF M2
U7 $E000-FFFF M3
CS0-7 $B580-B5FF P

Figure 2.12.1 Memory Map Logic

CME-11E9-EVBU Lab Manual

30

2.12.2 LCD Logic Control

The HC259 (U4) device provides the LCD enable on the EVBU. The

LCD enable applies CS7, A2, A3 and the E clock. The LCD is accessed

from address $B5F0-B5F1. Address $B5F0 provides LCD control

command writes or cursor position reads. Address $B5F1 provides

display data transfer to and from the LCD display.

2.12.3 Chip Select

The M1 (U5), M2 (U6) and M3 (U7) memory chip selects and the CS0-

CS7 peripheral chip selects provide access signals to the expanded bus

memory or peripherals. All chip selects are active logic low.

The M1-M3 chip selects are dedicated to the U5-7 memory sockets. If the

U6 memory socket is not populated with a memory device, M2 chip select

signal may be used for an off-board memory chip select via the bus port.

CS0-CS7 chip selects are available for connecting peripheral devices off-

board. CS7 is decoded for LCD port access. When using the LCD port,

do not apply CS7 to peripherals. Chip selects access up to 16 bytes, but

chip select application does not require a peripheral to provide all 16

bytes.

The EVBU board provides a SYNC option jumper associated with the

CS0-CS7 chip selects. This option effects all CS0-7 chip selects. The

SYNC option open allows address valid decoding to the chip selects, so

the chip selects will be valid for the duration of the valid address. This

should be applied in conjunction with the OE and WR signals to control

data movement to the associated peripheral. SYNC option installed will

modify chip select timing to be valid with valid data. This is useful for

applying logic latches as output or input data ports.

CME-11E9-EVBU Lab Manual

31

2.13 Miscellaneous Circuits

2.13.1 RS232 Level Translator

P_COM1 accomplishes EVBU RS232 communication. The HC11 SCI

serial IN RxD and OUT TxD operate at logic levels and must be translated

to RS232 levels to communicate with a PC. U8 translates the data on

P_COM1 to the 0-5V level required by the HC11.

2.13.2 VPP Connector

The VPP +/- pins can apply a 12V DC voltage to program a 68HC711

with on-chip EPROM if installed in the EVBU U1 socket. The HC11

installed at the factory does not provide EPROM memory.

2.13.3 PWR Terminal Block

The PWR terminal block’s three-connection points allow alternate power

input and also output voltage supply. The +V and GND connections may

be used to input power to the EVBU or to access the voltage from the wall

plug. The +5V will provide up to 50 ma for user circuits.

Point Purpose
+V +7 to 18V DC unregulated input or output
GND Ground
+5V +5V Input or Output

Figure 2.13.2 PWR Terminal Block Connection Point

2.14 Option Jumpers

Memory selection jumpers are two-pin and installed vertically.

2.14.1 Programming Enable Jumpers

MODA, MODB and WRITE_EN jumpers enable the programming of the

EVBU external EEPROM using the utility software. Remove the

CME-11E9-EVBU Lab Manual

32

WRITE_EN jumper before RESET or removing power to guarantee

program retention.

2.14.2 TRACE/PROG Jumper

The Buffalo Monitor Trace and Single Step functions are enabled by

installing the TRACE jumper (Position 2-3 of the 3-position jumper).

When installing the jumper, do not make other connections to the HC11

XIRQ or Port A3 I/O pins.

The PROG position (1-2) connects VPP+ to the XIRQ port line for

programming a 68HC711 device’s internal EPROM installed in U1.

Install only the PROG jumper and apply VPP+ during programming

operation.

2.14.3 SYNC Jumper

The SYNC jumper changes the CS0-7 timing. When open, the chip

selects remain active for the entire bus access cycle of the connected

peripheral. If the SYNC jumper is installed, the chip select cycle is timed

to be valid when data on the data bus is valid. Timing required by the

connected peripheral should be referred to when setting this option.

2.14.4 MEM-EN Jumper

Install the MEM-EN jumper during the Expanded Mode operation for

access to the external memory devices. Remove the MEM-EN jumper for

true Single-chip Mode operation to prevent memory data conflicts with

port C when using port C strobes.

2.15 Jumper Settings Alteration

Adding or modifying factory installed memory settings requires the following

changes.

CME-11E9-EVBU Lab Manual

33

2.15.1 JP3 – U5 Device Configuration

If a 32K device is installed, set to ON.

If an 8K device is installed:

• OFF configures 8K from 0000-1FFF and mirrors at 2000-3FFF,

4000-5FFF, and 6000-7FFF. Note that internal CPU register and

RAM writes will modify the external memory.

• ON configures 8K from 2000-3FFF HEX and mirrors at 6000-

7FFF, the recommended Buffalo Monitor and Small C operation

position. No internal writes will corrupt the external memory.

2.15.2 JP4-JP6 – U6 Device Configuration

When OFF the JP6 write-protects the U6 device.

Configuration JP4 JP5 JP7 JP6
8K RAM or EEPROM OFF OFF OFF ON
8K EPROM OFF OFF OFF OFF
32K EPROM OFF ON ON OFF
32K RAM or EEPROM ON OFF ON ON

Figure 2.15.2 U6 Device Configuration

2.15.3 JP8, JP9, WRITE_EN – U7 Device Configuration

Configuration JP8 JP9 WRITE_EN
8K EEPROM OFF OFF ON
8K EEPROM OFF OFF OFF
32K EPROM OFF NO OFF
32K EEPROM ON OFF ON

Figure 2.15.3 U7 Device Configuration

CME-11E9-EVBU Lab Manual

34

3.0 Software

The AxIDE terminal program and the Buffalo Monitor assist in programming and

debugging the HC11. The AxIDE provides an interface to the EVBU.

3.1 AxIDE

The AxIDE program is exclusive to the Axiom EVBU. AxIDE interfaces with

the EVBU to make building, uploading and programming easier. The other

AxIDE functions configure AxIDE and the processor. To configure the AxIDE:

• Open AxIDE from Programs on the Start Menu.
• Click the checkmark in the upper left corner of the program.
• Ensure the port settings are set to:

Port COM1/COM2 Handshaking
Baud Rate 9600
Parity None Xon/Xoff OFF
Data Bits 8 Rts/Cts OFF
Stop Bits 1 Dtr/Dsr OFF

Use a COM port not used by other resource. Check the Windows Device

Manager.

• Click OK
• Choose CME11E9-EVBU on the Tool Bar drop down menu.
• Ensure the AxIDE is properly configured.
• Connect the DB9 serial cable to EVBU COM1 port.
• Apply power to the board with the 9V power supply
• The Buffalo Monitor prompt appears:

BUFFALO 3.4 (ext.) – Bit User Fast Friendly Aid to Logical Operation

>_

If the prompt does not appear, consult the EVBU Users Manual: Troubleshooting.

CME-11E9-EVBU Lab Manual

35

3.1.1 Upload

The AxIDE upload feature sends the serial port a text file. When applied

with the Buffalo LOAD T command, a program S-Record can be loaded

for test and debug.

3.1.2 Build

The Build feature takes assembly source code and automatically compiles

it to machine code. The compiled code is placed in a S-Record file (.S19)

and a listing file (.LST) is also generated. The file extension S19 is unique

to Motorola microcontrollers. Note that DOS compatible path and

filenames (8 characters max) should be used.

3.1.3 Configure

The Configure feature sets the HC11 configure register. The configure

registers stores bits that set the on-chip EEPROM, on-chip ROM,

Watchdog system and security. By default the ROMON bit is enabled and

the Buffalo program is provided from the HC11 internal ROM. Disabling

the ROMON bit allows the HC11 to execute a program stored in the U7

memory device at RESET. Other CONFIG bits should not be modified.

3.1.4 Program

The Program feature writes to either internal or external programmable

memory. Use only S19 extension files with this feature.

3.1.5 Read

The Read feature reads the specified memory location contents with a

starting and ending range. View the information via the monitor or saved

in a file. Format the address with a HEX number proceeding 0x, i.e.

0x1FFF.

CME-11E9-EVBU Lab Manual

36

3.2 Buffalo Monitor

The EVBU firmware based support program Buffalo Monitor provides a self-

contained development environment. The development environment provides

method for testing, debugging software, and software/hardware applications. The

monitor interacts with the user by predefined commands entered via the terminal.

3.2.1 Command Format

The following notes apply to entering Buffalo commands.

• Number space, commas and tab characters separates fields.
• Input numbers are interpreted as hexadecimal.
• Enter input commands as upper or lower case. Input commands

convert to upper case, except for downloading commands to the
host computer or when operating in the transparent mode.

• Command lines maximum equals 35 characters. When the 36th

character is added, the monitor automatically terminates the
command entry. The terminal CRT displays: “Too long.”

• Correct command line errors by backspacing (CTRL-H) or by
aborting the command (CTRL-X or DELETE).

• Repeat commands by pressing [RETURN].

Character Meaning
<> Enclose syntactical variable
[] Enclose optional fields
[]… Enclose optional fields repeated

Figure 3.2.1.a Character and Syntactical Meaning

CME-11E9-EVBU Lab Manual

37

Buffalo Command Result
ASM [<address>] Assembler/disassembler
BF <addr1> <addr2> <data> Block fill memory with data
BR [-] [<address>] Breakpoint set
BULK Bulk Erase EEPROM
BULKALL Bulk Erase EEPROM+CONFIG register
CALL [<address>] Execute subroutine
G [<address>] Execute program
HELP Display monitor command
LOAD <host download command> Download (S-Records*) via host port
LOAD T Download (S-Records*) via terminal port
MD [addr1>[<addr2>]] Dump memory to terminal
MM [<address>] Memory modify
MOVE <addr1><addr2>[,dest>] Move memory to new location
P Proceed/continue from breakpoint
RM [p, y, x, a, b, c, s,] Register modify
T [<n>] Trace $1-$FF instructions
TM Enter transparent mode
VERIFY<host download command> Compare memory to download via host port
VERIFY <T> Compare memory to download vial terminal

Figure 3.2.1.bBuffalo Monitor Command

The command line format is:

><command>[<parameters>](ENTER)

where:

Prompt Result
<command> Command mnemonic (single letter for most commands)
<parameters> Expression or address
(ENTER) ENTER keyboard key – depressed to ENTER command

Figure 3.2.1.c Command Line Format

3.3 Source Code

Write program source code in ASC11 text with any file editor that will provide

text only output. Use the DOS EDIT or Windows NOTEPAD programs for

compatibility. After writing and saving the program source code, assemble or

CME-11E9-EVBU Lab Manual

38

compile code to the Motorola S-Record format with the AxIDE Build feature.

The output file typically has a .S19 file extension. The Buffalo LOAD T

command prepares the Buffalo Monitor for S-Record upload. The AxIDE Upload

function sends the S-Record file to the Buffalo for placing the program into

memory.

3.3.1 Debug Mode

In the debug mode, locate your CODE in external RAM. After

debugging, locate the code in EEPROM for dedicated operation without

Buffalo supervision. CODE may be located in the internal or external

memory. Typically code is originated at address $2000 for debug and

$E000 for dedicated operation.

3.3.2 DATA

Start DATA and variables in an unused RAM location. After debugging,

DATA may remain at the current location or moved to internal RAM

starting at $0000. Note that Buffalo Monitor applies RAM from $40-$FF

for its use.

3.3.3 Stack Register

Program the Stack Register somewhere near the top of the available RAM.

Buffalo provides some stack space, but if C programs are applied, the

stack will need to be moved to increase space. Typically the stack will be

placed at the top of internal RAM, $01FF.

3.4 Assembly Language

Assembly language programs are low level and directly interact with hardware,

making it the preferred EVBU programming method. Basic instructions correlate

logical 1 and 0 to +5V high or 0V low on I/O ports.

CME-11E9-EVBU Lab Manual

39

Assembly language provides readable mnemonic symbols for the CPU. Each

opcode represents an operation and an addressing mode. The default assembler

applied by AxIDE Build operation is the AS11.exe program. The AS11.exe

assembler is a two pass assembler that converts the input file mnemonic source

statements into a object code S-Record file and listing file. The listing file

provides the physical address and opcodes associated with the input source code

statements. All files are ASCII text type and can be viewed or printed with Editor

programs such as Notepad or Wordpad.

Reference the 68HC11 Reference Manual for information on the mnemonic

commands and operations.

3.5 Freeware Assembler

3.5.1 Introduction

Programs written in assembly language consist of a sequence of source

statements. Each source statement consists of a sequence of ASCII

characters ending with a carriage return.

3.5.2 Source Statement Format

Each source statement may include up to four fields: a label (or “*” for a

comment line), an operation (instruction mnemonic or assembler

directive), an operand, or a comment.

3.5.2.1 Label Field

The label field occurs as the first field of a source statement. The

label field can take one of the following forms:

1. An asterisk (*) as the first character in the label field indicates

that the rest of the source statement is a comment. Comments

are ignored by the Assembler and are printed on the source

listing only for the programmer’s information.

CME-11E9-EVBU Lab Manual

40

2. A white space character (blank or tab) as the first character

indicates that the label field is empty. The line has no label and

is not a comment.

3. A symbol character as the first character indicates that the line

has a label. Symbol characters are the upper or lower case

letters a-z, digits 0-9, and the special characters, period (.),

dollar sign ($), and underscore (_). Symbols consist of one to

15 characters, the first of which must be alphabetic or the

special characters (.) or underscore (_). All characters are

significant, and upper and lower case letters are distinct.

A symbol may occur only once in the label field. If a symbol does

occur more than once in the label field, then each reference to that

symbol will be flagged with an error.

With the exception of some directives, a label is assigned the value

of the program counter of the first byte of the instruction or data

being assembled. The value assigned to the label is absolute.

Labels may optionally be ended with a colon (:). If the colon is

used, it is not part of the label but merely acts to set the label off

from the rest of the source line. Thus the following code

fragments are equivalent:

here: deca

bne here

here deca

bne here

A label may appear on a line by itself. The assembler interprets

this as set the value of the label equal to the current value of the

program counter.

CME-11E9-EVBU Lab Manual

41

The symbol table has room for at least 2000 symbols of length

eight characters or less. Additional characters up to 15 are

permissible at the expense of decreasing the maximum number of

symbols possible in the table.

3.5.2.2 Operation Field

The operation field occurs after the label field and must be

preceded by at least one white space character. The operation field

must contain a legal opcode mnemonic or an assembler directive.

Upper case characters in this field are converted to lower case

before being checked as a legal mnemonic. Thus ‘nop’, ‘NOP’, or

‘NoP’ are recognized as the same mnemonic. Entries in the

operation field may be one of two types:

Opcode: These correspond directly to the machine instructions.

The operation code includes any register name associated with the

instruction. These register names not must be separated from the

opcode with any white space characters. Thus ‘clra’ means clear

accumulator A, but ‘clr a’ means clear memory location identified

by the label ‘a’.

Directive: These are special operation codes known to the

Assembler which control the assembly process rather than being

translated into machine instructions.

3.5.2.3 Operand Field

The operand field’s interpretation is dependent on the contents of

the operation field. The operand field, if required, must follow the

operation field and must be preceded by at least one white space

character. The operand field may contain a symbol, an expression,

CME-11E9-EVBU Lab Manual

42

or a combination of symbols and expressions separated by

commas.

The operand field of machine instructions is used to specify the

addressing mode of the instruction, as well as the operand of the

instruction. The following tables summarize the operand field

formats for the various processor families.

NOTE: In these tables, parenthesis “()” signify optional elements,

and angle backets “<>” denote an expression is inserted. These

syntax elements are present only for clarification of the format and

are not inserted as part of the actual source program. All other

characters are significant and must be used when required.

3.5.2.4 M68HC11 Operand Syntax

For the M68HC11, the following operand formats exist:

Operand Format M68HC11 Addressing Mode

No operand Accumulator and inherent

<expression> Direct, extended, or relative

#<expression> Immediate

<expression>, X Indexed with X register

<expression>, Y Indexed with Y register

<expression> <expression> Bit set or clear

<expression> <expression> <expression> Bit test and branch

Figure 3.5.2.4 M68HC11 Operand Formats

The bit manipulation instruction operands are separated by spaces

in this case since the HC11 allows bit manipulation instructions on

indexed addresses. Thus a ‘,X’ or ‘,Y’ may be added to the final

CME-11E9-EVBU Lab Manual

43

two formats above to form the indexed effective address

calculation.

3.5.2.5 Expressions

An expression is a combination of symbols, constants, algebraic

operators, and parentheses. The expression is used to specify a

value which is to be used as an operand.

Expressions may consist of symbols, constants, or the character ‘*’

(denoting the current value of the program counter) joined together

by one of the operators: + - * / % & | ^ .

3.5.2.6 Operators

The operators are the same as in c:

+ Add

- Subtract

* Multiply

/ Divide

% Remainder after division

& Bitwise and

| Bitwise or

^ Bitwise exclusive or

Expressions are evaluated left to right, and there is no provision for

parenthesized expressions. Arithmetic is carried out in signed

two’s-compliment integer precision (that’s 16 bits on the IBM PC).

3.5.2.7 Symbols

Each symbol is associated with a 16-bit integer value, which is

used in place of the symbol during the expression evaluation. The

asterisk (*) used in an expression as a symbol represents the

CME-11E9-EVBU Lab Manual

44

current value the location counter (the first byte of a multi-byte

instruction).

3.5.2.8 Constants

Constants represent quantities of data that do not vary in value

during the execution of a program. Constants may be presented to

the assembler in one of the five formats: decimal, hexadecimal,

binary, octal, or ASCII. The programmer indicates the number

format to the assembler with the following prefixes:

$ HEX

% BINARY

@ OCTAL

‘ ASCII

Unprefixed constants are interpreted as decimal. The assembler

converts all constants to binary machine code and is displayed in

the assembly listing as hex.

A decimal constant consists of a string of numeric digits. The

value of a decimal constant must fall in the range of 0-65535,

inclusive. The following example shows both valid and invalid

decimal constants:

VALID INVALID REASON INVALID

12 123456 More than 5 digits

12345 12.3 Invalid character

A hexadecimal constant consists of a maximum of four characters

from the set of digits (0-9) and the upper case alphabetic (A-F),

and is preceded by a dollar sign ($). Hexadecimal constants must

CME-11E9-EVBU Lab Manual

45

be in the range of $0000 to $FFFF. The following example shows

both valid and invalid hexadecimal constants.

VALID INVALID REASON INVALID

$12 ABCD No preceding “$”

$ABCD $G2A Invalid character

$001F $2F018 Too many digits

A binary constant consists of a maximum of 16 ones or zeros

preceded by a percent sign (%). The following example shows

both valid and invalid binary constants:

VALID INVALID REASON INVALID

%00101 1010101 Missing percent

%1 %10011000101010111 Too many digits

%10100 %210101 Invalid digit

An octal constant consists of a maximum of six numeric digits,

excluding the digits 8 and 9, preceded by a commercial at-sign

(@). Octal constants must be in the ranges of @0 to @177777.

The following example shows both valid and invalid octal

constants.

VALID INVALID REASON INVALID

@17634 @2317234 Too many digits

@377 @277272 Out of range

@177600 @23914 Invalid character

A single ASCII character can be used as a constant in expressions.

ASCII constants are preceded by a single quote (‘). Any character,

including the single quote, can be used as a character constant.

CME-11E9-EVBU Lab Manual

46

The following example shows both valid and invalid character

constants:

VALID INVALID REASON INVALID

‘* ‘VALID Too long

For the invalid case above the assembler will not indicate an error.

Rather it will assemble the first character and ignore the remainder.

3.5.2.9 Comment Field

The last field of an Assembler source statement is the comment

field. This field is optional and is only printed on the source listing

for documentation purposes. The comment field is separated from

the operand field (or from the operation field if no operand is

required) by at least one white space character. The comment field

can contain any printable ASCII characters.

3.5.3 Assembler Directives

3.5.3.1 Introduction

The Assembler directives are instructions to the Assembler, rather

than instructions to be directly translated into object code. This

section describes the directives that are recognized by the Freeware

Assemblers. Detailed descriptions of each directive are arranged

alphabetically. The notations used in this chapter are:

() Parentheses denote an optional element.

XYZ The names of the directives are printed in capital letters.

< > The element names are printed in lower case and contained

in angle brackets. All elements outside of the angle

brackets ‘<>’ must be specified as-is. For example, the

syntactical element (<number>,) requires the comma to be

CME-11E9-EVBU Lab Manual

47

specified if the optional element <number> is selected.

The following elements are used in the subsequent

descriptions:

<comment> A statement’s comment field

<label> A statement’s label

<expression> An Assembler’s statement

<expr> An Assembler’s expression

<number> A numeric constant

<string> A string of ASCII

<delimiter> A string delimiter

<option> An Assembler option

<symbol> An Assembler symbol

<sym> An Assembler symbol

<sect> A relocatable program section

<reg list> M6809 register list

<reg exp> M6809 register expression

In the following descriptions of the various directives, the syntax,

or format, of the directive is given first. This will be followed with

the directive’s description.

3.5.3.2 BSZ – Block Storage of Zeros

(<label>) BSZ <expression> (<comment>)

The BSZ directive causes the Assembler to allocate a block of

bytes. Each byte is assigned the initial value of zero. The number

of bytes allocated is given by the expression in the operand field.

If the expression contains symbols that are either undefined or

forward referenced (i.e. the definition occurs later on in the file), or

if the expression has a value of zero, an error will be generated.

CME-11E9-EVBU Lab Manual

48

3.5.3.3.EQU – Equate Symbol to a Value

<label> EQU <expression> (<comment>)

The EQU directive assigns the value of the expression in the

operand field to the label. The EQU directive assigns a value other

than the program counter to the label. The label cannot be

redefined anywhere else in the program. The expression cannot

contain any forward references or undefined symbols. Equates

with forward references are flagged with Phasing Errors.

3.5.3.4 FCB – Form Constant Byte

(<label>) FCB <expr> (,<expr>…, <expr>) (<comment>)

The FCB directive may have one or more operands separated by

commas. The value of each operand is truncated to eight bits and is

stored in a single byte of the object program. Multiple operands are

stored in successive bytes. The operand may be a numeric constant,

a character constant, a symbol, or an expression. If multiple

operands are present, one or more of them can be null (two adjacent

commas), in which case a single byte of zero will be assigned for

that operand. An error will occur if the upper eight bits of the

evaluated operands’ values are not all ones or all zeros.

3.5.3.5 FCC - Form Constant Character String

(<label>) FCC <delimiter> <string> <delimiter> (<comment>)

The FCC directive is used to store ASCII strings into consecutive

bytes of memory. The byte storage begins at the current program

counter. The label is assigned to the first byte in the string. Any

of the printable ASCII characters can be contained in the string.

The string is specified between two identical delimiters which can

CME-11E9-EVBU Lab Manual

49

be any printable ASCII character. The first non-blank character

after the FCC directive is used as the delimiter.

Example:

LABEL1 FCC , ABC,

Assembles ASCII ABC at location LABEL1

3.5.3.6 FDB – Form Double Byte Constant

(<label>) FDB <expr> (,<expr>,…,<expr> (<comment>)

The FDB directive may have one or more operands separated by

commas. The 16-bit value corresponding to each operand is stored

into two consecutive bytes of the object program. The storage

begins at the current program counter. The label is assigned to the

first 16-bit value. Multiple operands are stored in successive bytes.

The operand may be a numeric constant, a character constant, a

symbol, or an expression. If multiple operands are present, one or

more of them can be null (two adjacent commas), in which case

two bytes of zero will be assigned for the operand.

3.5.3.7 FILL – Fill Memory

(<label>) FILL <expression>, <expression>

The FILL directive causes the assembler to initialize an area of

memory with a constant value. The first expression signifies the

one byte value to be placed in the memory, and the second

expression indicates the total number of successive bytes to be

initialized. The first expression must evaluate to t he range of 0-

255. Expressions cannot contain forward references or undefined

symbols

CME-11E9-EVBU Lab Manual

50

3.5.3.8 OPT – Assembler Output Options

OPT <option> (,<option>,…<option>) (<comment>)

The OPT directive is used to control the format of the Assembler

output. The options are specified in the operand field, separated by

commas. All options have a default condition. Some options can

be initialized from the command line that invoked the Assembler,

however the options contained in the source file take precedence

over any entered on the command line. In the following

descriptions, the parenthetical inserts specify “DEFAULT”, if the

option is the default condition. All options must be entered in

lower case.

c – Enable cycle counting in the listing. The total cycle count for

that instruction will appear in the listing after the assemble bytes

and before the source code.

cre – Print a cross reference table at the end of the source listing.

This option, if used, must be specified before the first symbol in

the source program is encountered.

1 – Print the listing from this point on.

noc – (DEFAULT) Disable cycle counting in the listing. If the “c”

option was used previously in the program, this option will cause

cycle counting to cease until the next “OPT c” statement.

no1 – (DEFAULT) Do not print the listing from this point on. An

“OPT 1” can re-enable listing at a later point in the program.

s – Print symbol table at end of source listing.

CME-11E9-EVBU Lab Manual

51

3.5.3.9 ORG - Set Program Counter to Origin

The ORG directive changes the program counter to the value

specified by the expression in the operand field. Subsequent

statements are assembled into memory locations starting with the

new program counter value. If no ORG directive is encountered in

a source program, the program counter is initialized to zero.

Expressions cannot contain forward references or undefined

symbols.

3.5.3.10 PAGE – Top of Page

PAGE

The Page directive causes the Assembler to advance the paper to

the top of the next page. If no source listing is being produced, the

PAGE directive will have no effect. The directive is not printed on

the source listing.

3.5.3.11 RMB – Reserve Memory Bytes

(<label>) RMB <expression> (<comment>)

The RMB directive causes the location counter to be advanced by

the value of the expression in the operand field. This directive

reserves a block of memory the length of which in bytes is equal to

the value of the expression. The block of memory reserved is not

initialized to any given value. The expression cannot contain any

forward references or undefined symbols. The directive is

commonly used to reserve a scratchpad or table area for later use.

3.5.3.12 ZMB – Zero Memory Bytes (same as BSZ)

(<label>) ZMB <expression> (<comment>)

CME-11E9-EVBU Lab Manual

52

The ZMB directive causes the Assembler to allocate a block of

bytes. Each byte is assigned the initial value of zero. The number

of bytes allocated is given by the expression in the operand field.

If the expression contains symbols that are either undefined or

forward references, or if the expression has value of zero, an error

will be generated.

CME-11E9-EVBU Lab Manual

53

Index

0
0xFFFE, 15

A
A/D conversion, 6, 23
A2, 26, 30
A3, 26, 30
Accumulators, 1, 6, 7, 9, 10, 12, 13, 14, 15, 41, 42
Addressing Modes, 1, 15, 17, 42
Analog converter module, 4
Angle brackets, 46
AS11, 39
ASCII, 39, 44, 45, 46, 47, 48, 49
Assembler Directives

Assembler Output Options, 3, 50
Block Storage of Zeros, 3, 47, 51
Equate Symbol to a Value, 3, 48
Form Constant Byte, 3, 48
Form Constant Character String, 3, 48, 49
Form Double Byte Constant, 3, 49
Reserve Memory Bytes, 3, 51
Set Program Counter to Origin, 3, 51
Top of Page, 3, 51
Zero Memory Bytes, 3, 51, 52

Assembler Output Options
do not print, 50
enable cycle, 50
print a listing, 50
print cross reference, 50
print symbol table, 50

Assembly Language, 38, 39
Asynchronous non-return-to-zero, 6
AxIDE, 2, 20, 34, 35, 38, 39

B
BCD, 10, 13, 16
Binary, 10, 14, 15, 16, 44, 45
Binary-coded decimal, Also see BCD, 10
Binary-coded decimal, Also Seen BCD, 10, 13, 16
Bit manipulation instruction, 42

indexed addresses, 42
Bitwise, 43
Boolean, 16
Bootstrap Mode, 2, 18, 19, 21, 22
Branch operations, 18
Buffalo Monitor, 2, 4, 32, 33, 34, 35, 36, 37, 38
Build feature, 2, 35, 38, 39
Bus Port, 2, 23, 25, 26, 30

C
C bit, 11
Carry/Borrow, Also See C bit, 1, 11

CCR, 1, 7, 8, 10, 11, 13, 17
Central Processing Unit, 4, 6, 8, 9, 10, 11, 13, 14, 15,

16, 18, 25, 33, 39
Clear Interrupt Mask Bit, Also See CLI, 8
Clear-to-Send, Also See CTS, 23
CLI, 1, 8
CLOCK nonmaskable interrupt, 8
CLRB, 12
Command Format, 2, 36
Comment, 39, 46, 47, 48, 49, 50, 51
Comment field, 46, 47
Communication port, 2, 4, 23, 24, 25, 31, 34
Compare instruction, 10, 12, 16
Computer operating properly, 6, 7, 8
Computer operating properly, See COP, 6
Condition Code Register, Also See CCR, 1, 8, 9, 11
Condition codes, 12
CONFIG, 19, 20, 35, 37
Configure feature, 35
Constants, 3, 44

BINARY, 44
decimal constants, 44
HEX, 33, 35, 44
OCTAL, 44, 45
quote, 45

COP, 6, 7, 8
CPU, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 25, 33, 39
CRT, 36
CS0, 26, 29, 30, 32
CS7, 26, 29, 30, 32
CTS, 23, 24

D
DAA, 10, 16
Data terminal (DTR), 23, 24
DB9, 4, 34
DB9 serial cable, 4, 34
DB9-S connector, 4
DCD, 24
DDRC, 22
Decimal Adjust A, DDA, 13
Decimal Adjustment Accumulator, Also See DAA, 10
Decrement Index Register, 12
Direct Mode, 1, 17, 42
Directive, 41
DOS, 35, 37
DSR, 24
DTR, 23, 24

E
E clock, 29, 30
EEPROM, 5, 6, 15, 19, 20, 31, 33, 35, 37, 38
Electronically Erasable Programmable Read Only

Memory, Also See EEPROM, 5
Embedded systems, 4, 15
EPROM, 6, 31, 32, 33

CME-11E9-EVBU Lab Manual

54

Error flag, 11
Error handling services, Also See Interrupts, 1, 6, 7, 8,

9, 13
Errors, 6, 11, 40, 46, 47, 48, 52

forward references, 48, 49, 51, 52
Phasing errors, 48
undefined, 47, 48, 49, 51, 52
zero, 47, 52

Expanded Bus, 2, 28, 29, 30
Expanded Mode, 2, 4, 5, 19, 20, 21, 22, 23, 25, 28, 29,

30, 32
Expressions, 3, 41, 42, 43, 47, 48, 49, 51, 52
Extended Mode, 1, 17

F
FAIL nonmaskable interrupt, 8
FDIV, 16
Fill Memory, 3, 49
Flag bit, 12
Freeware Assembler, 3, 39, 46

G
GND, 24, 25, 27, 28, 31
Ground, 24, 25, 27, 28, 31

H
H bit, 13
Half Carry (H), Also See H bit, 1, 13
Handshake Input and Output, 21, 22
HEX, 33, 35, 44
Hexadecimal, 36, 44
High-impedance inputs, 21, 22
HPRIO, 19

I
I bit, 8, 9, 13
IDIV, 16
Immediate Mode, 1, 17, 42
IN RxD, 31
Increment Index Register, 12
Index Register X, Also See IX, 1, 10
Index Register Y, Also See IY, 1, 10, 12
Indexed addresses, 42
Indexed Mode, 1, 17, 18, 42
Inherent Mode, 1, 17, 18
Input/Output (I/O), 2, 4, 5, 6, 15, 19, 20, 21, 22, 23,

25, 27, 28, 32, 38
Interrupt Mask (I), 8, 9, 13
Interrupt Mask (I), Also See I bit, 1, 9, 13
Interrupt Mask (X), Also See X bit, 13
Interrupt vector, 6, 7
Interrupt vector table, Also See Interrupt vector, 6, 7,

13
Interrupts, 1, 6, 7, 8, 9, 11, 13, 19, 20
IRQ Masking bit, 7, 9, 26, 28
IRV, 18
IX, 1, 9, 10, 18

IY, 1, 9, 10, 18

J
JP3, 2, 33
JP3 jumper, 2, 33
JP4, 2, 33
JP4 jumper, 2, 33
JP6, 33
JP6 jumper, 2, 33
JP8 jumper, 2, 33
JP9 jumper, 2, 33

L
Label field, 39, 40, 41

asterisk, 39, 43
colon, 40
source listing, 39, 46, 50, 51
symbol character, 40
white space, 40, 41, 46

Latching input port, 21, 22
LCD, 2, 5, 6, 26, 27, 29, 30
LDAA, 12
LDAA#$80, 12
Listing file, 35, 39
Loads, 1, 15
Low-order byte, 17
LST, 35

M
M1, 29, 30
M2, 26, 29, 30
M3, 29, 30
M68HC11, 3, 6, 15, 16, 17, 42
Maskable interrupt, 8
MCU, 1, 2, 5, 6, 19, 23, 24, 25
MEM_EN jumper, 29
Memory, 1, 2, 3, 13, 15, 29, 31, 37, 49, 51
Memory Map Logic, 2, 29
Mnemonic symbols, 37, 39, 41
MOA, 18
MODA, 18, 19, 28, 31
MODB, 18, 19, 28, 31
Most Significant Bit, Also See MSB, 11
Motorola EVBU, 1, 2, 4, 5, 6, 15, 19, 23, 27, 28, 29,

30, 31, 34, 36, 38
MSB, 11, 12
Multiple operands, 48, 49
Multiple-word operands, 15, 17

N
N bit, 12
Negative (N), Also See N bit, 12
Nonmaskable interrupt, 7
Notepad, 39

CME-11E9-EVBU Lab Manual

55

O
OCTAL, 44, 45
OE, 26, 29, 30
Offset, 10, 18
Often-tested register, 12
On-chip Mode, 6, 19, 20, 31, 35
Opcodes, 1, 7, 14, 17, 18, 39, 41
Operand, 3, 41, 42
Operand field, 41, 42, 46, 47, 48, 50, 51, 52

angle brackets, 46
parenthesis, 42

Operand syntax, 3, 42
Operation field, 41, 46

assembler directive, 39, 41
opcode, 7, 14, 17, 18, 39, 41

OUT TxD, 31
Overflow, Also See V bit, 1, 12

P
P signal, 29
P_COM1, 31
P4 pin, 2, 5, 23, 27, 28
P4/EVBU connector port, 2, 27
Parentheses, 46
PC, 1, 6, 9, 11, 24, 31, 43
Phasing Errors, 48
PIOC, 22
Ports, 4, 5, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32,

34, 35, 37
Port A, 2, 4, 20, 21, 32
Port B, 2, 4, 20, 21
Port C, 2, 4, 20, 21, 22, 25, 28, 29, 32
Port D, 2, 4, 5, 20, 21, 22, 23, 24, 25
Port E, 2, 4, 5, 20, 23, 24, 25
PORTC, 22
PORTCL, 22
PORTD, 23
PORTE, 23

Prebytes, 1, 14
PROG jumper, 2, 32
Program Counter, Also See PC, 1, 3, 9, 11, 18, 40, 43,

48, 49, 51
Program feature, 35
PWR Terminal Block, 2, 31

R
Random Access Memory, 4, 6, 10, 15, 17, 19, 33, 38
RBOOT, 18
Read Data Setup Line, Also See DSR, 24
Read feature, 35
Read Only Memory, 4, 6, 15, 19, 20, 35
Read Only Memory, See ROM, 4, 6
Real time process control, Also see Interrupts, 1, 6, 7,

8
Real time process control, Also See Interrupts, 6, 7, 8,

11, 13, 19, 20
Register, 1, 9, 12, 21, 22, 23, 37
Relative Mode, 1, 17, 18
Relative offset, 18

RESET, 1, 6, 7, 11, 13, 14, 15, 18, 19, 20, 21, 22, 26,
28, 32, 35

Return from Interrupt, Also See RTI, 8
REV.D, 29
ROMON, 19, 35
RS232, 2, 4, 24, 31
RS232 translator, 2, 4, 24, 31
RTI, 1, 8, 13
RTS, 24

S
S bit, 14
S19, Also See S-Record, 35, 38
SCI, 4, 6, 7, 20, 22, 23, 25, 31
SEI, 1, 8
Serial Communication Interface, See SCI, 4
Serial Peripheral Interface, See SPI, 4
Set Interrupt Mask Bit, Also See SEI, 8
Shift and rotate instruction, 11
Shifts and rotate function, 1, 17
Signed, 11, 14, 15, 18, 43
Simple strobe mode, 21
Single chip, 2, 4, 18, 19, 21, 22, 23
Single Chip Mode, 2, 19
Small C, 33
SMOD, 18
Source Code, 35, 37, 39, 50
Source statement, 39, 46
Source statement format, 39, 40

label, 39, 40, 41, 47, 48, 49, 51
operand, 39, 43
operation, 10, 39

SP, 1, 9, 10, 11
Special Test Mode, 22
SPI, 4, 6, 7, 20, 22, 24, 25
S-Record, 35, 37, 38, 39
SS

Keypad, 2, 5, 6, 24, 25
STAA, 12
Stack Pointer, Also See SP, 1, 9, 10, 11
Stack Register, 3, 38
STOP, 14
Stop Disable (S), Also See S bit, 1, 9, 14
Stop Disable (S), Also see S bit and STOP, 14
Stop disable bit, 11
Stores, 6, 15, 35
STRA, 19, 28
STRB, 19, 28
Strobe A flag, 22
SWI nonmaskable interrupt, 8
Symbol character, 40

multi-byte instruction, 44
Symbol table, 41
SYNC jumper, 2, 30, 32

T
TAP, 10, 13, 14
TAP instruction, Also See TAP, 13, 14
Test Mode, 2, 12, 13, 20, 21, 35, 42
TRACE jumper, 2, 32

CME-11E9-EVBU Lab Manual

56

Transfers, 15
TRAP, 8

U
U1, 31, 32
U3, 28
U5, 2, 4, 29, 30, 33
U6, 2, 4, 29, 30, 33
U7, 2, 5, 15, 19, 29, 30, 33, 35
U8, 31
Upload, 2, 35, 38

V
V bit, 12
Vector table, 6
Vee, 26, 27
VPP Connector, 2, 31, 32

W
Wordpad, 39
WR, 26, 29, 30
WRITE_EN jumper, 2, 31, 33

X
X bit, 13
XIRQ nonmaskable interrupt, 7, 8, 9, 13, 28, 32

Y
Y register, 14, 42

Z
Z bit, 12
Zero (Z), Also see Z bit, 1, 12
Zero (Z), Also See Z bit, 12

