DEMO9S12HY64

Demonstration Board for Freescale MC9S12HY64
Microcontroller

USER GUIDE

Email: www.axman.com

Support: support@axman.com

CONTENTS

CAUTIONARY NOTES	4
TERMINOLOGY	4
FEATURES	5
REFERENCES	6
MEMORY MAP	7
SOFTWARE DEVELOPMENT	
DEVELOPMENT SUPPORT	
INTEGRATED BDM	
BDM_PORT HEADER	
POWER	9
POWER SELECT	
PWR_SEL	
VX_EN	
RESET SWITCH	11
LOW VOLTAGE RESET	11
TIMING	11
COMMUNICATIONS	12
RS-232	
COM CONNECTOR	
COM_SEL	
USB SERIAL LINK	
LIN COMMUNICATIONS	
LIN ENABLE OPTION	
LIN COM INPUT	
WAKE OPTION	
LIN_PWR OPTION MSTR OPTION	
LIN-J1 CONNECTOR	
CAN PORT	
CAN TERMINATION ENABLE	16
CAN STB	
MOTOR CONTROLLER	
LCD	
USER I/O	
POTENTIOMETER	
USER LED'S	
PUSHBUTTON SWITCHES	
MCU I/O PORT	19

LCD CONNECTIONS			19
		FIGURES	
Figure 2: BDM_PORT He Figure 3: V_SEL Option He Figure 4: VX_EN Option He Figure 5: Serial Connection Figure 6: COM1 Connector Figure 7: COM_SEL Option Figure 8: BCOM_EN Option Figure 9: LIN Block Diagrams Figure 10: JP6 Option He Figure 11: LIN Connector Figure 12: CAN Termination Figure 13: User1 Option He Figure 14: MCU I/O PORT	ader Header Header Ons On Heade on Head am eader - J10 on Enab Header T – J1	er ler	
		REVISION	
Date	Rev		Comments
January 21, 2009	Α	Initial Release	

CAUTIONARY NOTES

- 1) Electrostatic Discharge (ESD) prevention measures should be used when handling this product. ESD damage is not a warranty repair item.
- Axiom Manufacturing does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under patent rights or the rights of others.
- 3) EMC Information on the DEMO9S12HY64 board:
 - a) This product as shipped from the factory with associated power supplies and cables, has been verified to meet with requirements of CE and the FCC as a CLASS A product.
 - b) This product is designed and intended for use as a development platform for hardware or software in an educational or professional laboratory.
 - c) In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate prevention measures.
 - d) Attaching additional wiring to this product or modifying the products operation from the factory default as shipped may effect its performance and cause interference with nearby electronic equipment. If such interference is detected, suitable mitigating measures should be taken.

TERMINOLOGY

This development module utilizes option select jumpers to configure default board operation. Terminology for application of the option jumpers is as follows:

Jumper – a plastic shunt that connects 2 terminals electrically

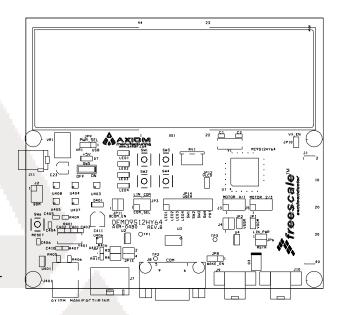
Jumper on, in, or installed = jumper is a plastic shunt that fits across 2 pins and the shunt is installed so that the 2 pins are connected with the shunt.

Jumper off, out, or idle = jumper or shunt is installed so that only 1 pin holds the shunt, no 2 pins are connected, or jumper is removed. It is recommended that the jumpers be placed idle by installing on 1 pin so they will not be lost.

Cut-Trace – a circuit trace connection between component pads. The circuit trace may be cut using a knife to break the default connection. To reconnect the circuit, simply install a suitably sized 0-ohm resistor or attach a wire across the pads.

Signal names followed by an asterisk (*) denote active-low signals.

FEATURES


The DEMO9S12HY64 is a demonstration board for the MC9S12HY64 microcontroller. Application development is quick and easy with the integrated USB-BDM, sample software tools, and examples. An optional BDM_PORT port is also provided to allow use of a BDM_PORT cable. A 40-pin connector provides access to most IO signals on the target MCU.

MC9S12HY64, 100 LQFP

- 64K Bytes Flash
- 4K Bytes Data Flash
- 4K Bytes RAM
- Integrated 4x40 LCD Driver
- Integrated 8-Ch Stepper Motor Controller
- 32MHz Maximum Bus Frequency
- Internal Oscillator
- On-Board 4x40 Custom LCD Glass
- High-Speed CAN Physical Layer Transceiver
- Enhanced LIN Physical Layer Transceiver
- RS-232 Serial Data Physical Layer Transceiver
- Integrated P&E USB-BDM
- BDM_PORT header for external BDM cable support
- MCU_PORT pin header for access to MCU IO signals
- On-board +5V regulator
- Optional Power from USB-BDM or MCU_PORT connector
- Power Input Selection Jumpers
 - Power input from USB-BDM
 - Power input from on-board regulator
 - Power input from Connector J1
 - Optional Power output through Connector J1
- User Components Provided
 - 5 Push Switches; 4 User, 1 Reset
 - 6 LED Indicators; 4 User, +5V, USB
 - 5K ohm POT w /LP Filter
- User Option Jumpers to disconnect Peripherals
- Connectors
 - 40-pin MCU I/O Pin Header
 - 2.0mm Barrel Connector
 - BDM PORT Connector for External BDM Cable
 - USB Connector
 - DB9 Connector
 - 4.2mm, 1x4 Molex CAN Cable Connector
 - 4.2mm, 2x2 Molex LIN Cable Connector

Specifications:

Board Size 5.5" x 5.0"

REFERENCES

Reference documents are provided on the Axiom Support web site in Acrobat Reader format. These documents may be accessed at www.axman.com/support.

DEMO9S12HY64 UG.pdf DEMO9S12HY64 QSG.pdf DEMO9S12HY64 SCH B1.pdf DEMO9S12HY64 Silk B.pdf DEMO9S12HY64 BOM B.pdf MC9S12HY64RMV1_0.12.pdf HY64 DEMO.zip GD-5506P.pdf AxIDE ver385.zip

DEMO9S12HY64 User Guide (this document) DEMO9S12HY64 Quick Start Guide DEMO9S12HY64 Schematic Rev. B DEMO9S12HY64 Top Silk, Rev B DEMO9S12HY64 Bill of Materials. Rev B MC9S12HY64 Reference Manual CodeWarrior, HCS12(X), v4.7 Demo Project S-Tek Custom 4 x 40 LCD Glass Data Sheet

Terminal Emulation Program

To access the documents above, simply insert the Axiom Support CD into the PC. A 68HC12 window will open. Click on the Browse CD button to access the CD. The documents above may be found in the following locations:

<drive>:\Documents\DEMO9S12HY64 DEMO9S12HY64 QSG.pdf DEMO9S12HY64_UG.pdf MC9S12HY64RMV1 0.12.pdf DEMO9S12HY64_BOM_B.pdf GD-5506P.pdf

<drive>:\Examples\ DEMO9S12HY64 HY64 DEMO.zip

<drive>:\Schematics\ DEMO9S12HY64 DEMO9S12HY64 SCH B1.pdf DEMO9S12HY64_Silk_B.pd

where <drive>: is the drive letter of the CD / DVD drive with the Support CD inserted.

MEMORY MAP

Figure 1 below shows the device register memory map. Refer to the MC9S12HY64 Reference Manual (RM) for further information.

Figure 1: Memory Map

Address	Module	Size (Bytes)
0x0000-0x0009	PIM (port integration module)	10
0x000A-0x000B	MMC (memory map control)	2
0x000C-0x000D	PIM (port integration module)	2
0x000E-0x000F	Reserved	2
0x0010-0x0017	MMC (memory map control)	8
0x0018-0x0019	Reserved	2
0x001A-0x001B	Device ID register	2
0x001C-0x001F	PIM (port integration module)	4
0x0020-0x002F	DBG (debug module)	16
0x0030-0x0033	Reserved	4
0x0034-0x003F	CPMU (clock and power management)	12
0x0040-0x006F	TIM0 (timer module)	48
0x0070-0x009F	ATD (analog-to-digital converter 10 bit 8-channel)	48
0x00A0-0x00C7	PWM (pulse-width modulator 8 channels)	40
0x00C8-0x00CF	SCI (serial communications interface)	8
0x00D0-0x00D7	Reserved	8
0x00D8-0x00DF	SPI (serial peripheral interface)	8
0x00E0-0x00E7	IIC (Inter IC bus)	8
0x00E8-0x00FF	Reserved	24
0x0100-0x0113	FTMRC control registers	20
0x0114-0x011F	Reserved	12
0x0120	INT (interrupt module)	1
0x0121-0x013F	Reserved	31
0x0140-0x017F	CAN	64
0x0180-0x01BF	Reserved	64
0x1C0-0x1FF	MC(motor controller)	64
0x0200-0x021F	LCD	32
0x0220-0x023F	Reserved	32
0x0240-0x029F	PIM (port integration module)	96
0x02A0-0x02CF	TIM1(timer module)	48
0x02D0-0x02EF	Reserved	32
0x02F0-0x02FF	CPMU (clock and power management)	16
0x0300-0x03FF	Reserved	256

SOFTWARE DEVELOPMENT

Software development requires the use of a compiler or an assembler supporting the HCS12(X) instruction set and a host PC operating a debug interface. CodeWarrior Development Studio is supplied with this board for application development and debug. Refer to the supporting CodeWarrior documentation for details on use and capabilities.

DEVELOPMENT SUPPORT

Application development and debug for the target MC9S12HY64 is supported through the background debug mode (BDM) interface. The BDM interface consists of an integrated USB-Multilink BDM and a 6-pin interface header (BDM_PORT). The BDM_PORT header allows connecting a HCS12/HCS08 BDM cable.

Integrated BDM

The DEMO9S12HY64 board features an integrated USB-BDM. The integrated BDM supports application development and debug via background debug mode. All necessary signals are provided by the integrated BDM. A USB, type B, connector provides connection from the target board to a host PC.

The integrated USB-Multilink BDM provides power and ground to the target board eliminating the need for external power. Power from the USB-Multilink BDM is derived from the USB bus; therefore, total current consumption for the target board, and connected circuitry, **must not exceed 500mA**. This current limit describes the current supplied by the USB cable to the BDM circuit, the target board, and any connected circuitry. Excessive current drain will violate the USB specification causing the bus to disconnect. Damage to the host PC USB hub or the target board may result.

CAUTION:

When powered from the USB bus, do not exceed the 500mA maximum allowable current drain. Damage to the target board or host PC may result

NOTE:

10K ohm pull-ups are applied to BDM signals RESET* and BKGD inside the P&E BDM block

BDM_PORT Header

A compatible HCS12 BDM cable may also attach to the 6-pin BDM interface header (BDM_PORT). Figure 2 below shows the pin-out for the BDM_PORT header.

Figure 2: BDM_PORT Header

BKGD	1	2	GND
	3	4	RESET*
	5	6	VDD

See the MC9S12HY64 Data Sheet for details

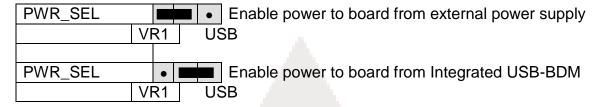
POWER

The DEMO9S12HY64 may be powered from several sources. An option header allows selection between the various power inputs. For application development and debug, the board may be powered from the USB BDM. The 2.0mm, center-positive, barrel connector (VIN) supports stand-alone operation and higher power requirements. Power may also be applied to connector J1 or the board may be configured to supply power from connector J1 to external circuitry.

Use of LIN circuitry requires application of +12V at the barrel connector or though the LIN connector.

CAUTION:

Damage to the board may result if voltages greater than +5.5V are applied at the connector J1 input.


POWER SELECT

Power may be applied to the board through the integrated USB-BDM circuitry, a 2.0mm barrel connector, or through connector J1. Power selection is achieved using 2 selection headers: the PWR_SEL option header and the VX_EN option header.

PWR SEL

The PWR_SEL option header (JP9) allows the user to select power input either from either an external power source connected to the VIN connector or from the integrated USB-BDM. If using an external power source, input voltage should fall between +7V and +40V. Voltage input from an external source should be kept as low as possible to prevent the voltage regulator from becoming excessively hot. Figure 3 below details the PWR_SEL header connections.

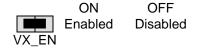
Figure 3: V SEL Option Header

Power from the integrated BDM is drawn from the USB bus and is limited to **500 mA**. This current limit accounts for the total current supplied over the USB cable to the BDM circuit, the target board, and any connected circuitry. Current drain in excess of 500 mA will violate the USB specification and will cause the USB bus to disconnect. This will cause the board to exhibit power cycling where the board appears to turn-on then off continually. Damage to the host PC or the target board may also result.

CAUTION:

When powered from the USB bus, do not exceed the 500mA maximum allowable current drain. Damage to the target board or host PC may result

VX EN


The VX_EN option header is a 2-pin jumper that connects or disconnects input J1-1 directly to the target board voltage rail. J1-3 connects directly to the target board ground plane. Use of this feature requires a regulated input power source. This power input is decoupled to minimize noise but is not regulated or protected. Care should be exercised when using this feature; no protection is applied on this input and damage to the target board may result if excessive voltage is applied. Also, do not attempt to power the target board through this connector while also applying power through the USB-Multilink BDM or the PWR connector; damage to the board may result.

CAUTION:

Damage to the board may result if voltages greater than +5.5V are applied at the connector J1 input.

Power may also be sourced to off-board circuitry through the J1 connector. The current supplied from the USB bus or the on-board regulator limits current available to external circuitry. Excessive current drain may damage the target board, the host PC USB hub, or the on-board regulator. Figure 4 below shows the VX_EN header option settings.

Figure 4: VX_EN Option Header

CAUTION:

Do not exceed available current from USB-BDM or on-board regulator when sourcing power through connector J1 to external circuitry.

RESET SWITCH

The RESET switch applies an asynchronous RESET to the MCU. The RESET switch is connected directly to the RESET* input on the MCU. Pressing the RESET switch applies a low voltage level to the RESET* input. A pull-up bias resistor allows normal MCU operation.

LOW VOLTAGE RESET

The MC9S12HY64 utilizes an internal Low Voltage Detect (LVD) circuit. The LVD holds the MCU in reset until applied voltage reaches an appropriate level. The LVD also protect against under-voltage conditions. Consult the MC9S12HY64 reference manual for details LVD operation.

TIMING

The DEMO9S12HY64 internal timing source is active from RESET by default. An external 8MHz crystal oscillator, configured for low-power operation, is also installed. Refer to the target device RM for details on selecting and configuring the desired timing source.

COMMUNICATIONS

Communications options for the DEMO9S12HY64 include serial RS-232, LIN bus, and CAN bus. Serial RS-232 communications is supported through a RS-232 physical layer device (PHY) and standard DB-9 connector, or through the integrated BDM. A high-speed, enhanced, LIN PHY provides LIN bus communications through a 2 x 2 Molex connector (pn 39-29-1048). A high-speed CAN PHY provides CAN bus communications through a 1 x 4 Molex connector (pn 39-30-3045).

The COM_SEL option header connects the MCU SCI signal to either the LIN PHY or the RS-232 PHY. See Figure 7 below for jumper position options.

The BCOM_EN option header enables serial communications through the integrated USB BDM. See Figure 8 below for jumper position options.

RS-232

The DEMO9S12HY64 applies the MAX3387E, RS-232 transceiver to support serial communications. A right-angle, DB-9 connector allows attaching standard serial cables to the target board. A ferrite bead on shield ground provides conducted immunity protection for the board. Figure 5 below shows the SCI signal connections.

Figure 5: Serial Connections

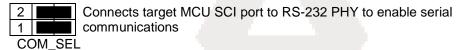
MCU Port Signal	Transceiver Signal	DB-9 CONNECTOR	COMMENTS
	+5V	J8-1	
PS1/PWM7/TXD	TXD	J8-2	
PS0/PWM6/RXD	RXD	J8-3	
PR2/IOC1_6/KWR2	DTR	J8-4	CT1 (NC)
	GND	J8-5	
PR0IOC0_6/KWR0	DSR	J8-6	Pull-up
PR3/IOC1_7/KWR3	RTS	J8-7	CT2 (NC)
PR1/IOC0_7/KWR1	CTS	J8-8	Pull-up
	TP2	J8-9	
PAD00/AN00/KWAD0	INVALID*		CT3 (NO)
PAD02/AN02/KWAD2	FORCEOFF*		CT4 (NC)

COM Connector

A standard 9-pin Dsub connector provides external connections for the SCI port. The Dsub shell is connected to board ground through a ferrite bead providing noise isolation on the RS-232 connection. The figure below details the DB9 connector.

Figure 6: COM1 Connector

+5V	1	6	DOD
TXD	2	7	DSR
RXD	3	0	RTS CTS
DTR	4	0	NC
GND	5	9	INC


Female DB9 connector that interfaces to the MCU internal SCI0 serial port via the RS-232 transceiver. Handshaking signals connect to the MCU GPIO inputs via the RS-232 transceiver.

COM SEL

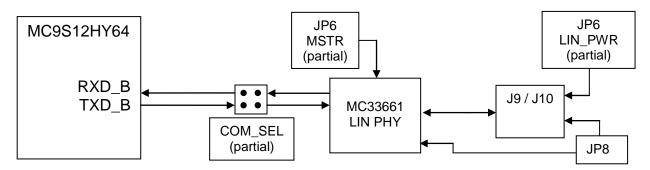
The COM_SEL option header connects the MCU SCI port to either the SCI PHY or the USB-BDM connection. Figure 7 below shows the option jumper configuration for the COM_SEL option header.

Figure 7: COM_SEL Option Header

USB SERIAL LINK

The integrated USB-BDM provides a serial link from the target MCU to the host PC through the host application. Refer to the P&E Multilink documentation for further details. This signal path is enabled using option jumper JP11, BCOM_EN. Figure 8 below shows the configuration for the BCOM_EN option header.

Figure 8: BCOM_EN Option Header


Enables serial communications through the integrated USB BDM. Remove shunts to disable serial comm. through the USB BDM.

NOTE: These option jumpers must be removed to enable SCI communications through the COM port.

LIN Communications

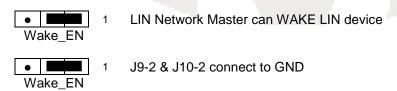
The DEMO9S12HY64 applies an MC33661 LIN bus physical layer device to support LIN communications. The PHY may be configured as a Master node or Slave node on the LIN bus. LIN connectors J9 & J10 are configured in parallel to support pass-thru signaling if needed. Connector J9 is not installed in default configurations. Figure 9 shows the LIN block diagram.

Figure 9: LIN Block Diagram

The LIN interface provides optional features of slew rate control, network supply, and wake up option. Refer to the MC33661 Reference Manual for detail on PHY functionality. The following sections detail functionality for LIN option jumpers.

LIN Enable

The LIN PHY is enabled by default. The LIN PHY may be disabled by connecting the test point TP3 to GND.


LIN COM INPUT

LIN inputs RX and TX are selectable using the COM_EN option header. Refer to Figure 7 above for details on configuring this header.

Wake Option

Option header JP9 allows a LIN Master node to wake a Slave node if enabled. A low-to-high transition wakes the Slave device from sleep mode.

Table 1: Option Header - JP4

LIN_PWR Option

The LIN_PWR option jumper connects pin 1 of both LIN connectors to the +V input. In Master mode, this option may be used to power the LIN bus. This option requires +12V be applied at connector J11. In Slave mode, this option allows slave device to draw power from the LIN network. For Slave mode configuration, external power should not be applied at the PWR jack. LIN_PWR is enabled by installing a shunt from JP6-1 to JP6-2. Refer to Figure 10 below.

CAUTION:

If the target board draws power from the LIN bus in Slave mode, do not apply external power to connector J11. Damage to the board may result.

NOTE:

If the target board powers the LIN bus in Master mode, +12V must be applied externally at connector J11.

MSTR Option

The MSTR option jumper allows the LIN transceiver to be configured for Master mode functionality. Master mode may also be set using the INH pin. Refer to the MC33661 device datasheet for details on use and configuration. Refer to Figure 10 below.

Figure 10: JP6 Option Header

Connects +V input to LIN bus for Slave node configuration Enables LIN Master configuration

NOTE: LIN PHY may also be configured as a Master Node using the INH pin. Refer to the LIN PHY data sheet for details.

LIN-J1 Connector

The DEMO9S12HY64 supports two, 2 x 2 Molex connectors to interface to the LIN bus. One connector (J9) is not installed in default configurations.

JANUARY 20, 2009

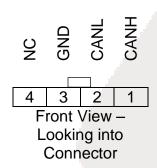
DEMO9S12HY64 USER GUIDE

Figure 11: LIN Connector – J10

LIN Signal 4 • • 3 +V (JP6-2)
WAKE 2 • • 1 GND

Front View - Looking into Connector

NOTE: LIN Port Connector - Molex 39-29-1048


Mates with; Housing - Molex 39-01-2040, Pin - Molex 39-00-0036

CAN Port

A TJA1040T, High-Speed CAN physical transceiver (PHY) is applied to support CAN bus communications. A 1 x 4 MOLEX connector (pn 39-30-3045) interfaces to external CAN cabling.

The differential CAN signals are terminated by 120 ohms which may be removed using option header JP13. Avalanche diodes protect the CAN PHY from voltage surges on the input differential signal lines. Table 2 below shows the CAN connector pin-out.

Table 2: CAN_PORT – J3

NOTE: CAN Port Connector - Molex 39-30-3045

Mates with; Housing - Molex 39-01-4040, Pin - Molex 39-00-0036

CAN Termination Enable

CAN bus termination of 120 ohm with virtual ground is applied to the differential CAN signals. The SPLIT output from the PHY is connected to the virtual ground providing common-mode stabilization. The differential CAN bus signal termination may be removed using option header JP13. To prevent signal corruption, both option jumpers **must** be installed or both option jumpers **must** be removed. Do not operate the CAN bus with only 1 shunt installed at JP13.

NOTE:

To prevent signal corruption both shunts at JP13 should be either ON or OFF

Figure 12 below details the option header shunt positions.

NOTE:

To prevent signal corruption both shunts at JP13 should be either ON or OFF

Figure 12: CAN Termination Enable

2	Connects CANL termination
4	Connects CANH termination
JP13	

Standby Mode

The CAN PHY is placed in standby mode by default. To enable the device, apply a logic low level at test point TP1.

MOTOR CONTROLLER

The MC9S12HY64 provides multiple PWM Motor Controller outputs suitable to drive instrument stepper motors or other load requiring a PWM signal. The Motor Controller provides 8 PWM channel outputs associated with 2 pins for each channel (16 pins total). Refer to the target MCU RM for details on use and capability of the Motor Controller.

LCD

The DEMO9S12HY64 applies a 4 x 40 custom LCD glass connected directly to the target MCU. Refer to the MC9S12HY64 Reference Manual for details on use and configuration of the LCD module. The LCD data sheet can be found on the Support CD received with the board. Figure 15 at the end of this document shows the signal connections between the target MCU and the LCD.

USER I/O

User I/O includes 1 potentiometer, 4 push button switches, and 4 green LEDs for user I/O. The USER (JP14) option header enables or disables each User I/O function individually. The sections below provide details on user I/O. Figure 13 below shows the USER jumper settings.

Potentiometer

The DEMO9S12HY64 target board provides a 5K ohm potentiometer (POT) to simulate analog input. The POT is decoupled to minimize noise during adjustment. Figure 13 below shows the USER jumper settings.

User LED's

The DEMO9S12HY64 target board provides 4, green, LEDs for output indication. Each LED is configured for active-low operation. A series, current-limit resistor prevents excessive diode current. Figure 13 below shows the USER jumper settings.

Pushbutton Switches

The DEMO9S12HY64 provides 4 push-button switches for user input. Each push-button switch is configured for active-low operation. No bias is applied to these push-button inputs. Use of target MCU internal pull-ups is required for proper operation. Figure 13 below shows the USER jumper settings.

Figure 13: User1 Option Header

Į	JSE	R1	Signal	ON	OFF
LED1	•	•	PR0/IOC0_6/KWR0	Enabled	Disabled
LED2	•	•	PR1/IOC0_7/KWR1	Enabled	Disabled
LED3	•	•	PR2/IOC1_6/KWR2	Enabled	Disabled
LED4	•	•	PR3/IOC1_7/KWR3	Enabled	Disabled
SW1	•	•	PAD04/AN04/KWAD4	Enabled	Disabled
SW2	•	•	PAD05/AN05/KWAD5	Enabled	Disabled
SW3	•	•	PAD06/AN06/KWAD6	Enabled	Disabled
SW4	•	•	PAD07/AN07/KWAD7	Enabled	Disabled
POT	•	•	PAD00/AN00/KWAD0	Enabled	Disabled

MCU I/O PORT

The MCU I/O PORT connector provides access to the MC9S12HY64 I/O signals. Figure 14 below show the pin-out for the MCU I/O connector.

Figure 14: MCU I/O PORT - J1

VDD	1	2	FP29/IRQ*/PA0
VSS	3	4	RESET
TXD/PWM7/PS1	5	6	BKGD/MODC
RXD/PWM6/PS0	7	8	FP12/PR4
KWR0/IOC0_6/PR0	9	10	KWAD0/AN00/PAD00
KWR1/IOC0_7/PR1	11	12	KWAD1/AN01/PAD01
KWR2/IOC1_6/PR2	13	14	KWAD2/AN02/PAD02
KWR3/IOC1_7/PR3	15	16	KWAD3/AN03/PAD03
KWS5/MOSI/PWM1/PS5	17	18	KWAD4/AN04/PAD04
MISO/SCL/PWM0/PS4	19	20	KWAD5/AN05/PAD05
KWS6/SCK/PWM2/PS6	21	22	KWAD6/AN06/PAD06
SS*/SDA/PWM3/PS7	23	24	KWAD7/AN07/PAD07
FP33/PA4	25	26	TXCAN/PS3
FP34/PA5	27	28	RXCAN/PS2
FP35/PA6	29	30	FP23/PH4
FP36/PA7	31	32	FP24/PH5
FP28/PB0	33	34	FP25/PH6
FP37/PB1	35	36	FP26/PH7
FP38/PB2	37	38	FP17/SDA/PR5
FP39/PB3	39	40	FP18/SCL/PR6

LCD CONNECTIONS

The figure below shows the connections between the target MCU and the GD-5506P Custom LCD Glass.

Figure 15: LCD Connections

MCU PIN	SIGNAL	LCD PIN
88	BP3/PB7	1
87	BP2/PB6	2
86	BP1/PB5	3
85	BP0/PB4	4
84	FP39/PB3	5
83	FP38/PB2	6
82	FP37/PB1	7
81	FP36/PA7	8
80	FP35/PA6	9
79	FP34/PA5	10
78	FP33/PA4	11
77	FP32/API EXTCLK/PA3	12
76	FP31/PA2	13
75	FP30/XIRQ*/PA1	14
74	FP29/IRQ*/PA0	15
68	FP28/PB0	16
67	FP27/PR7	17
	FP26/PH7	18
66 65	FP25/PH6	19
	FP24/PH5	
64		20
63	FP23/PH4	21
60	FP22/SDA/SS*/PH3 FP21/SCK/ECLK/PH2	22
59		
58	FP20/MOSI/PH1	24
37	FP0/PWM0/PP0	25
38	FP1/PWM1/PP1	26
39	FP2/PWM2/PP2	27
40	FP3/PWM3/PP3	28
41	FP4/PWM4/PP4	29
42	FP5/PWM5/PP5	30
43	FP6/PWM6/PP6	31
44	FP7/PWM7/PP7	32
45	FP8/KWT0/IOC1_4/PT0	33
46	FP9/KWT1/IOC1_5/PT1	34
47	FP10/KWT2/IOC1_6/PT2	35
48	FP11/KWT3/IOC1_7/PT3	36
49	FP12/PR4	37
51	FP13/KWT4/IOC0_4/PT4	38
52	FP14/KWT5/IOC0_5/PT5	39
53	FP15/KWT6/IOC0_6/PT6	40
54	FP16/KWT7/IOC0_7/PT7	41
55	FP17/SDA/PR5	42
56	FP18/SCL/PR6	43