Guadalajara Applications Lab

freescale-

semiconductor

Demonstration Lab:
Motor Control using SMAC (ZigBee™ Technology)

By Edgard Palomera Mena
RTAC Americas
06/2005

Overview

This paper presents an example laboratory exercise based on the previous Motor Control
Demonstration lab' using the same MCU MC9S12C32 but incorporating the ZigBee technology to
drive a DC motor remotely. NI ELVIS is used as platform to connect components, provide power, and
analyze circuit operation. The CSM12C32 and the ZigBee Module (RF MC13192U board) are plugged
into the NI ELVIS connectors; basic circuitry is used to control the motor. MCU program development
and debug are done W|th Metrowerks CodeWarrior™ software running on the same host PC as the NI
ELVIS and LabVIEW ™ software.

Introduction

The main purpose of this demonstration lab exercise is to introduce the ZigBee Technology and to
show how easy can be use this technology. But what is ZigBee? Is a Standardized protocol for Ultra
Low Power Wireless Personal Area Networks (WPANs). The ZigBee architecture is based on the
IEEE 802.15.4 Specification and Incorporates all layers of software including the Application Layer
and below (Network, MAC, PHY); the SMAC (Simple Media Access Controller) is an ANSI C based
code stack that provides a layer of simple primitives that controls basic transceiver activities.

The ZigBee technology can be used in different markets such as consumer electronics, health care,
industrial control, building automation, and residential/light commercial control.

This motor control Lab exercise was developed to explore how the NI ELVIS system® could
complement existing mlcrocontroller development tools in the engineering laboratory environment. The
Freescale MC9S12C32 MCU?® and MC13192* are used. The MC13192 is a short range, low power,
2.4 GHz ISM band transceiver which contains a complete 802.15.4 phyS|caI layer (PHY) modem
designed for the IEEE 802.15.4 wireless standard. Metrowerks CodeWarrior® is used as the MCU
development tool .The breadboard provides a convenient platform for wiring peripheral circuitry and
multiple power supplies for the lab exercise. As an added convenience, NI ELVIS virtual instruments
such as the oscilloscope provide a way to look at various signals such as the PWM signal that drives
the motor speed.

This paper discusses the implementation of this demonstration lab exercise. The implementation and
theory of operation is given for each part of the system. Several possible variations are discussed that
could be used to adapt this lab to slightly different audiences. For example, some classes might
concentrate on developing a more sophisticated LabVIEW front panel that could monitor and record
the duty cycle of the PWM drive signal and the resulting motor speed. Another class might develop a
more sophisticated application using the ZigBee technology. Yet another class might extend this lab to
implement a closed lab to implement a closed loop motor control speed controller using either PID or
fuzzy logic techniques.

1 Freescale Semiconductor

L

Z “freescale

semiconductor

Guadalajara Applications Lab

CSh12C32 MODULE MC13192U MODULE

MCU PROJECT BOARD

NI ELVIS NI ELVIS - Oscilloscope

Figure 1. System modules.

System Block Diagram

The system consists of 2 NI ELVIS workstations. Each NI-ELVIS workstation has 1 MCU project
board, 1 CSM12C32 module and 1 MC13192U module as shown in Figure 1. One of these
workstations uses the MC13192U module as receiver and the other one uses the MC13192U module
as transmitter. The receiver workstation sends the data to the host PC through the data acquisition
card connected to the NI ELVIS system. The NI ELVIS block includes power supplies, digital I/0, as
well as a large breadboard area for experiment circuitry. The MCU block includes an MC9S12C32 16-
bit MCU along with a crystal, RS-232 level shifters, and a BDM connector for programming and
debugging the application software. CodeWarrior development software supports debugging through a
BDM pod connected to a printer port or USB port on the PC. The ZigBee Module includes the low
power transceiver MC13192FC and the antenna printed out on the PCB. The dc motor interface block
includes the motor, a 2-transistor circuit to translate the 0-5V PWM signal from the MCU into a 0-15V
signal to drive the motor. Figure 2 shows the overall block diagram® of the system.

> Freescale Semiconductor

&

Guadalajara Applications Lab

Z “freescale

semiconductor

- ey e NI ELVIS

HCS12CPU 32 KB Flash

SCI 2 KB Flash
SPI
oo SPEED
i o —
Vg | 0% CONTROL
3.3Vto 5V
Timer
10-key Wakeup 16-bit, 8-ch
IRQ Ports
DBG12 PWM
8-bit, 6-ch (
1 x CAN 16-bit, 3-ch
2.0AB
MC9512C32
HCS12CPU 32 KB Flash NI ELVIS
SC1 2 KB Flash
o ATDO
Vreg 10-bit, &-ch
33V to 5V
Timer
10-key Wakeup 16-bit, 8-ch
IRQ Ports
DBG12 PWM
B-Dit, 6-Ch | s— HOTOR
1XxCAN 16-bit, 3-ch INTERFACE
2.0 AIB

i

 oxdiibilore o
HOST

Figure 2. Block Diagram of the Motor Control — ZigBee Demonstration Lab.

NI ELVIS - Oscilloscope

The virtual Oscilloscope is used to display the PWM signal from the MCU. The oscilloscope VI is a
virtual instrument that appears as an interactive window on the PC screen with buttons and knobs
similar to those found on traditional oscilloscopes. The probes for this oscilloscope can be connected
to the BNC connectors on the front of the NI ELVIS workstation, or they can be wires from the CHA+/-
and CH_B+/- connectors at the upper left corner of the breadboard. The student can make the same
kind of measurements with this virtual oscilloscope as they could with a physical oscilloscope, without
the need fro a separate piece of test equipment.

Freescale Semiconductor

- “ freescale”

semiconductor

MC9S12C32 MCU Block

Guadalajara Applications Lab

The MCU block is a pre-assembled module made by Axiom Manufacturing that includes the
MC9S12C32 MCU and a small amount of common support circuitry. Figure 4 shows the pin
assignments for the Transmitter MCU block. The transmitter MCU reads the potentiometer’s voltage
using an Analog to Digital Converter (ADC channel 0) to control the motor speed remotely.

MC13192_RESET
MC13192_ATTN

ANTCTL

MC13192_IRQ_BIT

w3 w3 ma o Y R Y R DR Y Y Y Y Y
[elllslafs|<ll/zla sl2[slo kol alul o]

PWO/ICO/FTE PPS/KWPS po—
P A1 /FT WDXW
PW2AIC02/PT2 V5K 25
PHIAICO3IPTE P& RXCAM 34
VOD1 PM1 /TXCAN [o—
V351 PMZ/MISC a7
PW4./1004.7PT4 PM3/55 a1
ICA5/FTS [goEXd ek 28
ICO6/PTE PhEsSCK T
ICOFAPTT F'S'lfTKDT
MODCABRGD PS@!RHDST
PE4 V354 '35
KCLKS«/PE7 YRH 55
ECLK/PE4 VDDA 32—
YE5R PADAT AN 53
YOOR PADBEANGE 37
RESET# PADBSSANBS "3"_i"""
YOOPLL PADAL AN @4 58
XFC PADBI/ANBS ‘2g
VSSPLL FADAZ ANGZ 5B
EXTAL PADAT SANEAN ?
XTAL PADBBESANGE 2T
TESTAYPP PAG e
IRQ=PE1 XIROw/PER [——
MC9S12C32

MC13192_GPIO1
(+3V)
(GROUND)

MIsS0O
MC13192_CE
MOSI
SCLK

MC13192_RTXEN
POTENTIOMETER

MC13192_GPIO2

Figure 4. Pin Assignments for the Transmitter MCU Block.

The receiver MCU provides the PWM signal to drive the motor according to the potentiometer reading
on the Transmitter MCU board. Figure 5 shows the pin assignments for the Receiver MCU block.

Freescale Semiconductor

-

z “freescale”

semiconductor

Guadalajara Applications Lab

MC13132 RESET —L{Pwe/0co/FTe PRS/KHPS |Zo— MC13192_GPIOT
MC13192 ATTN —S{PW1/10C1 /PT1 VDOX[z=— (+5V)
PWUM SIGNAL —y1Pw2/1C02/PT2 vSSX 32— (GROUND)
—|PW3/ICO3/PTS PMB/RXCAN [>—
—atvoot PM1 /TXCAN (75—
ey ¥S51 PH2/MISC s KIS0
—5PWa/10C4/PT4 PM3/SSe 27— MC13192_CE
—51C05/FT5 FMé/MOSI 22— MOSI
—54]/C06/FTé PM5/SCK=o— SCLK
TICU?/F"T? F'S'I/T}CD?
—5|MODC/BKGD PS/RXD 35—
ANTCTL —£1pga vesA S~
% YCLKSe/PE7 YRH %
5| ECLEAPE4 YODA 54
— 5| VSSR PADBT/ANGT =
?VDD‘R Pﬁﬁﬂﬁfﬂr‘l@ﬁ?
""':I'E RESET#* FPADBS AMNBS "3"_]"""
—g¥DDPLL PADB4/AN@4 [
T XFC PADBISAMNBS EC
] VSSPLL BADAZ AMB2 BE
—55|EXTAL PADA1 /ANG1 (25— MC13192_RTXEN
ﬁ XTAL PADBEANBE ET
4] TESTAYPP PAg o5
MC13192_IRQ_BIT —={IRQ#/PE1 ¥IRQw/PEB|——— MC13192_GPIO2
MCB512C32

Figure 5. Pin Assignments for the Receiver MCU Block.

The next circuit provides the required current to drive the motor, in other words the main purpose of
the circuit is to be a source of current for the dc motor. The next circuitry is going to convert the 0-5V
PWM signal coming out from the MCU into a 0-15V PWM signal, which is the signal required to drive
the motor. The function of R3 is to be a pull up resistor to ensure that Q2 is going to be off when the
switch Q1 is open. And the function of R2 is just to limit the current that comes out from the Q2 base
when the switch Q1 is on. As we are switching on and off an inductor (motor) we need to add some
diodes called freewheeling diodes in order to avoid the spikes generated by the motor. Figure 6
shows the circuitry used to drive the motor.

15V
0
R3
10K D1
A 1N001
R2
Q2
2N3906
1K
PWM SIGNAL FROM MCU Rt a1
A 2N3904 -
\%! K D2
V1 = 0/5V _?_0 DC MOTOR Q 1N4001
]
?0 o

Figure 6. DC Motor Interface.

5 Freescale Semiconductor

Guadalajara Applications Lab

freescale-

semiconductor

I/O Characteristics

For this lab exercise, we use an analog (ATD) input to measure the Potentiometer voltage which is
used to set the motor speed. The ATD input to the MCU is between 0-5 volts. The potentiometer is
located at the lower left corner of the MCU Project Board.

The PWM signal is a digital output pin with the same characteristics as a general purpose digital
output. The PWM frequency for this motor control demonstration lab is 3.9 KHz so that the
oscilloscope VI could be used to examine the waveform even with a relatively slow DAQ card. In a
commercial application, you would probably want to use a PWM frequency of 20 KHz or higher so that
you could not hear this frequency at a low motor speeds.

The serial port of the PC uses standard RS232 voltage levels (from —X volts to +X volts where X can
be from 6 to 15 volts depending upon the particular PC). A level shifter device is included on the MCU
block to convert the RS232 levels to the 0-5volt levels that are required at the RxD and TxD pins of the
MCU. We have wired the level shifted RxD and TxD pins to the DSUB connector. This would be used
if you were using the serial monitor rather than a BDM pod to interface CodeWarrior to the MCU. The
serial monitor eliminates the need for a BDM pod, but is not as elegant (unobtrusive) as the BDM pod.

Background Debug Connections

The ideal way to allow CodeWarrior to access the MCU is through the background debug interface.
The MCU module includes a 2x3 square-post header for this purpose. This interface uses a single
dedicated pin on the MCU plus ground and optional connections to reset and Vdd. CodeWarrior
communicates with a BDM pod through a parallel or USB port on the PC. The BDM pod converts
commands from CodeWarrior into a custom serial BDM protocol. Using this interface, CodeWarrior
can execute primitive commands to read or write memory locations (even while application programs
are running), read or write CPU registers, set breakpoints, or trace single instructions. These primitive
commands allow Code Warrior to program the Flash memory and debug user programs.

Serial Monitor Option

The serial monitor® is a small 2 Kbytes program that is programmed into the Flash memory of the
MC9S12C32. This program emulates primitive debugging commands similar to those available
through the background debug interface. CodeWarrior has the ability to choose either a BDM pod or
this serial monitor as the interface to the target MCU.

With the serial monitor, a simple serial cable is used to connect the serial I/O port of the PC to the
(level shifted) SCI pins of the target MCU. This eliminates the cost of the BDM pod.

Motor Circuits

The circuit provided in Figure 6 is used to translate the 0-5 volt PWM signal from the MCU to the 0-15
volt levels required for the motor.

This motor is a basic dc brush motor. This motor could be driven by an analog voltage between 0 and
15 volts, or it can be driven by a PWM signal from the MCU. By adjusting the duty cycle of the PWM
signal, you can control motor’s speed. The 1N4001 across the motor reduces the amount of noise
generated by the motor when it is driven by a PWM signal. If you remove this diode while the motor is
running, you should notice the speed drop slightly and the sound will change to be slightly raspier.

6 Freescale Semiconductor

Guadalajara Applications Lab

- “ freescale”

semiconductor

MICROCONTROLLER SOFTWARE

The software for this paper can be downloaded from Freescale Semiconductor web site. For this lab,
the software is built using CodeWarrior software stationery. The software stationery provides all the
software necessary to access internal microcontroller register space and program memory through
software labels. The stationery associates all register and control bit names from the MCU data sheet
with the appropriate address and bit position. The stationery provides the foundation for students to
write their own embedded programming routines.

To open the demo software, first extract the file labeled NI_ELVIS_ZIGBEE_DEMO.zip to your chosen
directory. The extraction will form a directory labeled NI_ELVIS_ZIGBEE_DEMO (ex.
C:NI_ELVIS_MCU_DEMO)\), which includes a directory labeled NI_ELVIS_ZIGBEE_DEMO_C32. The
NI_ELVIS_ZIGBEE_DEMO_CS32 project directory is built for the MC9S12C32 MCU Block. To proceed,
make sure to have Metrowerks CodeWarrior for HC(S)12 installed on your computer. Within the
NI_ELVIS_ZIGBEE_DEMO_C32 you will find a file labeled NI_ELVIS_ZIGBEE_DEMO_C32.mcp,
which is the Metrowerks CodeWarrior project file for this lab’s demo software. Double-click on the file
and the demo software will be loaded in the CodeWarrior development environment. Figure 6 shows
the lab’s demo software open in the CodeWarrior development environment.

Metrowerks CodeWarrior - [main.c] = =131 x|
File Edit View Search Project Debug Processor Expert Window Help = ﬁ'lﬂ
MEFEH o< hRA AN ECHSEER
ey {} - M- [~ o - Path: |D:\PORTLAND\ELVIS_ZIGBEE_DEMO\Sources\main.c 1
ELVI5_ZIGBEE_DEMO.mcp I e O
2 = % Filenamse :© main.c =
[# PaErcD ey B35 e o Project © NI ELVIS ZIGEEE DEMO C32 =
- *3% Processor : S6FB014
Files |Link Drder' Targatsl *% Version : Drivyer 01.07
3% Compiler Hetrowerks 512 C Conpiler
¢ | File | Code | Data 4[4 |- o DatesTime : 09/06/2005, 09:.00 a.m.
B readme.tat néa nfa + =~ ek Abstract
;E"as.ﬂ gig 12 Wi jl :: g:;; r:{lgdgée].:e placed user's cods
- [mand PR 1=
M datapage.c 148 0+ + = >
@ applicationh 0 0« = % Includes for compiling procedure =~
- Startup Code 57 3+ ¢ d #include "application.h"
{3 Pm 0 0 - =
F-{_J Linker Map] 0« =l 7% SHAC Includes #/
=& Libraries b 26+ o+ = #include <hidef h> ~* for Enablelnterrupts macro *-
-l me9s12c32h 1] 0« = #include "device header h"
- e 2c32e 0 253+ o 2 #include "pub_def h" |
ol ansisilib R4 2012 . =l #include :s:mele_mac.h" . .
{3 Debugger Project File 0 0 = #include "mc:13192_hw_c:|jnf ig h
-7 Debugger Crod Files i} [V = ﬁ:_mciuge ugcgfhwfcﬁrl}flg h
EEQSMAC 2K £+ + o P Mt i
- Vectors.c 130 0« « = it
@ device_header h 0 0« =l R ST EEIN
A divers.c e 6+ » o #define TRANSMITTER 1 #% Set the ZigBee-S512C32 Module as
B diverzh 0 0« = s<#define TRANSHITTER 0O ~% Set the ZigBee-S512C32 Module as
[MC13192_hw_config.c 106 0« « =
@R MC13192_hwe_configh 1} 0 e = ~*¥Global Variables =
@ MC13192_regsh i 0. = UINT16 =:
B moutw_config.c 171 0+ » o UINTE ATDChODataResult;
B meu_bwe_configh i} 0« =l TIHTE FUHChZDutyCycle:
@ pub_defh] 0« =
B revision bt T3 nia + = <% SMAC Global Variables *-
B simple_mac.c 267 e o o TINT8 app _=tatu= = 0;
B simple_mac.h i 0 = UINTS tz_data buffer[l]. % TY buffer s1ze *
B simpie_phy.c 1029 A TIHTE r®_data_buffer[1]; <% BRI buffer size =~
bt tx_packet_t tx_packet: <% SHAC structure for T packets =
-~ simpie_phy.h a 0. = r®_packet_t r=_packst; <% SMAC structure for REI packets *
UTHTE rtx_mode; r% Needed for SMAC, application ca
lied E
42 fles 1k * Z| Line13 Cold5 [[4] | LIJ

Figure 7. Motor Control-ZigBee Project in CodeWarrior.

The software is divided mainly in to parts. The SMAC (Simple Media Access Controller) section and
the motor control application part. The SMAC’ is an ANSI C based code stack available as sample
source code, which can be used to develop proprietary RF transceiver applications using the
MC1319x integrated circuit. For a better understanding of the SMAC code you can download the
SMACRM User’s guide from the freescale website.

7 Freescale Semiconductor

&

-
-

freescale”

semiconductor

Guadalajara Applications Lab

Basically the SMAC section contains the Initialization and Hardware configuration needed to interface
the MCS12C32 with the MC13192 transceiver. The communication between the MCU and the
transceiver is implemented via the Serial Peripheral Interface (SPI). The hardware interface uses five signals
(Reset, RTXEN, ATTN, and IRQ) besides the four required for the SPI module.

The user needs to choose if the software is for the transmitter board or for the receiver board as

shown in figure 8.

M Erowerks CodeWa rrior =101 =
Fi= Edt Vew Ssach Progect Debug ProcessorExpert Window Help
‘h rla - <hRA AN DS R EEREBR
] al | m main.c o [=] 3|
ELVIE_ZIGBEE_DEMOUmcp
b - () - - [~ d' - eeh: [DAPORTLANINELVIS _ZIGEEE_DEMON Seurces\main e O
| Peeico R = R R RO RSSO NIRRT LRLE o
. - Frlenaxs RAain.G -
File I'-'*Didﬂ| Twl - FProject FI_ELVIS_ZIGEEE_LEHG C32
Ly Procms=mor - EEFEO14
® | Fie | Cods L] Verzicmn . Driver 01.07
B reache nfa - Canpller Ketrowarks 512 C Compiler
= - teTime - Ryl Py a.m,
[=r=TT™ 3 a E-—t::;t 09062005, 09:00
E Jrocin 226 - Hain wodule.
B duapage.c 148 s Here iz to be placed user’'s code,
DE ‘1“%3‘““ 5? PERE 585 538 3 F T F b p o g T SR b b E RS F b F b RS b S b S p S S g g 5 3. LN
[ailup e
EPm 4 ~« Includes for conpiling procedure =~
l'gmﬂ'”ﬂ _E Finclude “"application.
E s 7
B otk 2e22h [} <= SHAC Includes =
mes 12032 1] F¥include <hidef hr <= f:n\ Enablelnterrupts macra &
P
@ ansizilb TE4E #include "device_header.
3 Debuggse Preject Fia i :-’,mCilb;gE leb_?al h” W
inc = “sinple_mac
121 Dtruzges Cd Fies o Finclude *ac13197_hw_config.h®
=45 SWa s . = T a
Fainclude “mou_bw_confis. h
B vectasc L #include *drivers h°
8 dovies headerh b Finclude “simple_phy. h"
A diverz nr =
B ditverch o inas =
B MCIH92 hw o, 106 #define TRANSEITTER 1 ## Set the TigBee-512C37 Nodule as Transwitter s
= MEI352_i_con o s/fdmfine TRANSMITTER O % Smt the ZigBee—512C37 Nodule sz Recsiver %/
MCI332 regeh o
A rocaybe_config e b ~#Global Yariables
~B meu_bwe_contio b 1] A
A pub_celh [
A evizonl nfa
B cinple_mac.c = 4% SHAC Global Verisbles =~
@ simple_mach o = . =
i dinple e 100 UINTS app_status = 0; .
B cimple h o UINTE tx_data_buffer[1]: ~# T buffer size &
: simpie_phy UINTA rx_dats_buff “w Fi buffer size n~
tE_packel_b Lx_pac oo SHAC structure for TH pechets =
rE_packet_t ru_pachet: <% SHAC structure for B packets &7 =
42 il 0| W itnest calzs (4] | v,
4| |

Figure 8. Transmitter and receiver mode selection.

Figure 9 shows the initialization part. In this section 3 functions are called in order to make the
necessary initialization. The function Applnit(); initializes the packet structure as much as for the
transmitter packet as for the receiver packet. The function mcu_init(); makes the proper initialization
for the Microcontroller, initializes the SPI, GPIO’s etc. The function MC13192_init() Initializes the

MC13192 register map.

Freescale Semiconductor

&

> Guadalajara Applications Lab
2 | cale"
- Trees
semiconductor
4 Metrowerks CodeWarrior =181 x]
Fi= Edt Wew Seach Project Debug Frocescor Expert Window Heln
MEsls - <hRAAN DSE s NE B
=z T
| m mainc ..Jﬂ.l— -)-q
ELVIS ZIGHEE_DEMO.mop
I b=) - - [~ o - Pah | D)PORTLAND ELVIS_ZIGBEE_DEMO'Soress'iman O
| ® FazicD Rk g
Ao SMNC Glabal Varisbles = I
Fiss | Lk O | Targes | UINTE apm ztatus = 0
OIKNTA tx_data_buf s# TH buffer cize &
* | Fis | Cads NINTE rx_date_buffex % RE bulfsr =zizs #*-
[na tR_packet_t bH_| <= SHAC structure for TH pachets =
]
=53 Souices Ere] r¥_packet_t rx_packet; <# SHAC structure for R packets &
h .m 76 NINTA rtx_mods; <w Heeded for SHAC, spplicstion can resd thiz varisble =
A datapage o 148
B appbcatenh 1]
#HZ) Staitup Cade BT
-"-EF."“ . g #oragwa LINE_INFO DERIVATIVE *wctslici2”
[+ s
=59 Libeavies: TH void wsin(woid)d
B e 26320 0 -
Bl 312632 1}
A ansisilb FRAE AppInit(): s# Initimlize th= pack=t »/
[+ Debeagas Progect Fia o moi_lnit(); “w Initialize HOO =
&) Dabragge: Crnd Filas i HC13192_anat(): 4 Initialize transoeiver &
[Er=TT * .)
@ Vattae.c 130 Aitaal Clk spasd =
. dEUlﬁt_hbdeh o D
= s ¢ “E To adjust cutput powsr csll bhe HIME_WC13197_Ph_oubput_sdiust() with:
I
B MCI92 e co, 106 HAY_POVER {+3 to +5dBn)
Bl MCI3192 h .. [} HOMIHAL EOWER (D dbn}
B MC1392_tegeh o HI B “{-16dEn)
Bl roca_bwa_configc 1m
-3 meu_bwa_contio b 1} or sanevhere custom 7 (0-15, 11 (HOHIKAL FOWER) being Default power)
B pub_delh o
teon.| f 4
E ':-’m"f,:fm’f“ b MIME_HCL3193 PA_cutput_adiust(HAX DOUER); ~<Cet MAX power setting
@ sinple mac h o ##HLHE_MC13152_Pa_output_sadjust {HIN_FOUER) = ~<Set WIN powser setting
B simphk_phy.c] <-HLME_MC131%2_Ph_output_adjust (ROHINAL POVER): ~Set Hominal power setting
-8 simple_phyh o Afume_external_clock(): <% switch clock scurces from mcu to HC131%x CLEO®A
Enablelnterrupts: =
o 42 fikez 1;5' Line51 Col3 [[4] | 7]

Figure 9. Initialization Section.

The next code section determines if the ADC or the PWM modules is going to be initialized. If the
transmitter mode has been selected by the user, the Analog to Digital Converter module Channel 0 is
going to be initialized, and after that is going to call the TXMotor(); which is the transmitter main loop.
And if the receiver mode has been selected by the user the Pulse Width Modulation module Channel 2
is going to be initialized, and after that is going to call the RXMotor(); which is the receiver main loop.

See Figure 10.

Freescale Semiconductor

4“

Launched by Motorola

p< - freescale”

semiconductor

Mo trawerhs CodeWarrior

Fi= Edt Vew Ssaarch Progect Debug ProcessorExpert Window Help

Guadalajara Applications Lab

ATEasE - ~haaA DR LERR

=]

a.us_zm._mm]

| m main.c . i I [¥ |

[Paeico -3
o Fils Cods
B readme i nfa
=M Souices M
- ey
dalapage. ¢ 148
~@ appbeatonk 1]
[+ Starlup Code 57
@3 Prm]
[+ Lirksss Ban 1}
=159 Lieaies:
A k12632 h 1]
~l me3s12:32 0 1}
B ansisith E
FHCE Debupge Progect Fia
[#+) Debrugges Cmd Files [
= SHAC s
~Hl Vectoisnc 130
B device_headech o
B divere Fiki
~8 dirverzh o
B MCI3192 hw e, 106
~ B MC13E2 e 1}
MC13132_segshy o
i b _config e 17
~8 meu_tw_conligh i
B pub_deih il
Al revisont nia
A rimple_macc 2T
@ civpl:_mach o
B smple_ply.c 1028
~@l simple_phy h o
42 ke 108,
4| |

b () - - [~ dl - Pen | DAPORTLANCNELVIS_ZIGEEE_DEMOSourcesimain. o
SAusa_exbernal slesk): <% switeh slosk seurees from ncu te HC131%z CLEO= %
Enablelnterrupts:
app_status = INITIAL STATE: »+ Initial Hode =
if (MIME ==t _chann=l _request(E) == SUCCESE) { #/S=lect chann=l bhere {0-15)

app_status = RECEIVER _ALWATS CON:
1
if (TRARSHITTER == 1){ & If the Tranzmitter wods iz salect
ATDChOInit(); #® Initialize ADC Chann=l 0 =~
TEMator(): <= Transwit Hode Loop =
alaa] Se T ithe Receiver mode iz salected =
PUMChIZInit(); A% Imicializes PUM Chann=l 2 #-
REMatar{); Rec=aive Hods Loop w7
1
H
void hpplnit{woid){
tx_pachet datalength = 0: <4 Tnitialize the ti_packet global &7
.data = &tx _data_bufier[0]; ¥ Set the pointer to point to the tx_buffier =/

.datalength = 0 sm Initislize the rx_pscket global =
dara = dom_data_| I'.-L.-E erf[0]:

nuﬂatalﬂngth - 2 ## Arhitrary size &7

.shatus = 0; <# Initialize status ta 0 »/

Figure 10. ADC or PWM modules initialization.

10

Freescale Semiconductor

“
‘-'

e freescale“

semiconductor

aunched by Motorola

Guadalajara Applications Lab

The following code section is going to be executed only if the user selects previously the receiver
mode. This section switches the application status to a receiver always on state. The PWM duty cycle
register is updated each cycle. See Figure 11.

4§ Metrowerks CodeWarrior Bl _.Jlnlﬁl
Fi= Edt Vew Search Project Debup ProcessorEwpert Window Help
AfTaclasc<haaAaNoEhsENER

izl i @ main. oy [=] |
ELVIS_ZIGHEE_DEMO.mop
] b () - M- [- o - Pah: | DAPORTLANDNELVIS_2IGBEE_DEMG Sources\main.c
[% Pazico -3 :
Fiss | Link Do | Tangets | .
Fxhcclocop @ Thiz iz the nain thread of execution vhen the nodule iz in
® | Fie | Cods * Receiver Mods.
B readme nia bt .
FEEWI'}E* a7 : Paransters Fone
& dalapage.c 198 : Beturn | Hooe
D. eppheatont 0 e
* Stanup Coads 5T | =
E =1 p El:ud RENotor{woad)
20 Linkes Man o
=159 Lieavies 7K tor [::}
B 120320 [} {
B mc3512c32 1}
& andisilh R4 PUMOTYZ = FUHCRIDutyCycle; ~# Update FUM Duty Cycle 0 — 100% (Ox00 — OxFF) ®~
#H20 Dretnigoe Project Fis o .
[+ Datrugges Cind Files o aviteh (app_status) {
E9 SHAL o Wpp—
A Yechansc 130 e Suiich to RECEIVER_ALVATS.ON =
@ device_hesdech o = o
B dibesz e A7 sp ;t*tu = BECEIVER_ATWAYS_ON;
& divvers b 0 e
@ WMC12192 b co, 10 case RECEIVER ALUAYS OH:
Bl MCINE2_hwe_cao., 1] if {rtx 'r.cde == TOLE_MODE) {
] MC13132_s=gsh o KLME_RE epable_reqguest (krx_psckat, 0);
Bl i bw_config e m }
~8 o _bw_contah o LOW_POWER_WHILE; % Uait wods #7
@ pub_defh o break:
B evisontd wfa
L default:
& sinelemoch * /% Should not set here me
B sinpls_phec 1028 app_statws = BECEINER_ALVAYS O
-l simple_pryh 1]
- r
i)
¥

I 426z | N Llne33 colss [4] |

4 »

Figure 11. Receiver main loop.

11 Freescale Semiconductor

“
‘-'

e freescale“

semiconductor

The following section of the code is going to be executed only if the user selects previously the
transmitter mode. In this section of the code, the data (ADC reading) loaded into the buffer is sent to
the receiver board. See Figure 12.

aunched by Mo

Guadalajara Applications Lab

4§ Metrowerks CodeWarrior . g _.Jlnlﬁl
Fi= Edt Vew Search Project Debup ProcessorEwpert Window Help
AMEasgEw - <ha2 AN DRy EER
] izl i @ main.c = Al '_".U:J':"(‘I
ELVIS_ZIGBEE_DEMO. mop
b () - W [~ o - Pah: | DAPORTLANDELVIS_ZIGEEE_DEMC Souresman o el
W FLEICD hd
I ® , o
Fhee | Link O | Tengets |) =
}.
« | Fie | Code
B readme nia
3 Soues 3 =
-m % Twhiccloop : This is the main thread of =xecution when the module iz in
= dalac ﬁg - Tran=nitter ¥ode
-
B appleatenk [} = - Mone
#HZ Staitup Code) : =L
E 3 Fm o = Beturn © Hone
0] Likes Map ["
=159 Lieavies 7K s
B 120320 [} wold TEMotor{waid){
Al meS1 20320 o
@ ansisiib FEAE <% TiHotor nazn loap ®-
2] Detrugge Progect Fis o -
[#+{Z) Dirugges Cind Files i} for [::)
EH SHAC &
8 Vectose 120 te_data_buffer[0] = ATDChODataResult: <+ Load buffer to send the DS conwertiom b
R device " H _data_buf fe ATDCh O oz H
ES'M: “E tx_packet datalength = 1; /% Specifiez ths data lenght *-
AMreTs.
B MCI392_hw_co, 10 HCPS data request [&t=_pocket): <4 Transnit dota #°
A MCI92 hw_co 0
A MC12132_segsh o PORT4_BITO = ~PORTA_BITO!: <= Toggle the LED1 =~
B oocsd_bwa_confin o i
~Hl meu_bv_conlinh [} } % End TiMator asin loop %/
@ pub_ceih o
B wiionn nia }
simple_mac.c 267
@ simple_mach o —
¥ - *‘.’““Eﬂ-: 1025 * HCPSDatalndication : Receive data packet indicatiom
P % HAC Layer daka indicaticm handler. RX packet is in the global structure
-
Pavameters - =RxPacket = Data pachket pointer
[2 ks A P Lin=93 ColZs | 4] | a7
4 L

Figure 12. Transmitter main loop.

12 Freescale Semiconductor

“
‘-'

e freescale“

semiconductor

aunched by Mo

Guadalajara Applications Lab

The next function is called every time a data has been received, in this section of the code the data
received is read and loaded into the PWMCh2DutyCycle variable; and after that the duty cycle register

is updated with this value. See Figure 13.

4 Metrowerks CodeWarrior

ma:mmmmmwmmﬂ

L= R L-EEE - By

EF | @ mainc
ELVIS_ZIGHEE_DEMO.mop
] b - 1) - W~ [+ d - P [DAPORTLAND'ELVIS_PIGEEE_DEMChScurmes'main.c
[% Fieico ik =
Fies | Link Dodet | Targete | s
HCPEDatalndication : Receiwe data packet indication
o | FE | Cads # HAC Layer dats indicsation handle=r. RY pscke=t i= in th= global =tructurs=
-
ngwme:ﬂ ;;: : Faramsters - sRxPacket - Data packet pointer
= - ﬁg = Return @ Hone
page -
B appicatent o ¥ Flace gour code hers to handle & mac laper data indication.
[#HE) Stailup Cade 57 # E¥ packst i= in the global stractars
@3 Fim 0 = ry_packet .da ta
[+ Lk Map o e
=59 Libearies T
Bl 126320 1] woid KCPS_data_indicationdry_pscket_t =rx_packet] {
Bl rme9512c32c 1]
A ansisilb FedE if (rx_pschet-rstatus == SUCCEES){
FHZ Detmagge Progect Fla 1]
\;EDQMQQH[N?I‘] Fies i} PUHCh2DutyCysle = rx_data_buffer[0]: <o Read
‘{ja}'i&sm“ 123‘; BORTE_BIT4 = ~FORTE_BITI;
B device_hesdech o
Al diverz e
B divversh o ¥
B MO8 ey o, 106 3
Bl MCI33L b con.
A MC13192_se=gsh [
Bl rocad b _confin o 17)
E fcL_Fw_conha b 1} ® HLEEMC11192FesetIndication : Natifies wou that the MCLI192 has b=zen reset.
pub_def b o "
B reviconld nla = Paramaters -
H =
E::::tj::z: 25; : Fe=turn : Hone
= 9] X
P void KIME_MC1319Z reset_indication{){
= fpplication smust handle this hers. =~
{ 42 ik 15 L3 Col25 |4 |
4 L

& data received in the bufier

la the 1EDL »-

Figure 13. Receive data indication.

13

Freescale Semiconductor

&

Z “freescale

semiconductor

Guadalajara Applications Lab

The next section shows the ADC interrupt. Each time an ADC conversion is completed the following
code is executed. The variable ATDChODataResult is loaded with the value in the register ATDDROL,
the value contained in the register ATDDROL is the conversion’s result of the ADC reading. See Figure
14.

i M trowerks CodeWarrior . A =101 x|
Fi= Edt Vew Search Project Debug ProcessorEwpert Window Help
MaFEa - =<hHBAN DR sEER
-H-] 2 | mmain.c ; o [|
Wik ZIGHEE_DEMO.mop
b= {) - m- (- o - Pa: [DOPORTLAND ELVIS_TIGBEE_DEMD Secreat\man o
|ﬁ PAEICD jﬂ if (rx_packet-rstatus == SECCEES){ g
Fies ILi'kMﬂ| Targets | FUHCh2DutyCyele = rx_data_buffer[0]: s# Bead the data received in the hutfwil
| Fils | Coda PORTE_BIT4 = ~PORTE_BITA: “# Togglae bthe LEDL #~
B resdme bt i
« =] Souces i
¢ Tlimng zs)
A datapage.c 148
B applcatonh 1] ¥
*HZ) Staitup Cade 57
=3 Pim o e
{2 Linkse Map 0 # MLMEMC11192ResetIndication : Motifies wou that the MC13197 has been reset
=159 Libeaies 7 ®
B k120320 0 = Paranaters
Bl me9512c32c 1] -
B ansisilb TR4E ¥ Feturn : Hooe
#HTT Debrugge: Projec Fis 1] '/
P =
ﬁggmﬁ"gg"[m Flez 2,? woid HIME_¥C13197_reset_indication{}{
- B Vestois.c 130) <% gpplication nuEt heodle this hers, =5
A device_headerh o
@ ditverz nr
B dirverch 1]
& MCI3132 hw co, 0B
B MCI332 iwe_con o interrupt waid ATDIsr{woid)}{
B MC12132_segsh o
B wcs_bwe_confinc M <& Bead the voltage on Potencioneter =
B e b_contak n ATOCHODmtaRezult = ATDOROL; #% | Rasd ATD Chann=l 0 convesrsion result s
A pub_deih o o)
A revizonid nia ATDCTLE = D:80: < Be-Start Conwertion for Chonnel 0 =~
Bl simpls_mac.c 26T
B simpl_mach o
1] sjmpb_ﬂw.c e
@ simplephy b o #w END AT
-
d 426k 1[:& Line230 Col32 [(4] | L

Figure 14. ADC interrupt
REFERENCES

1. Eduardo Montanez and Jim Sibigtroth, Motor Control Demonstration Lab, Freescale Semiconductor Inc.,Austin,
TX(2003).

2. National Instruments, NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) User
Manual, National Instruments, Austin, TX (2003).

3. Freescale, MC9S12C32 Users Guides, Freescale Semiconductor Inc., Austin, TX (2003).

4. Freescale, MC13192DS, Freescale Semiconductor Inc., (2004).

5. Metrowerks, CodeWarrior Development Studio for HC(S)12 Microcontrollers (Special Edition),
Metrowerks, Austin, TX (2003).

6. Freescale, MC13192FS, Freescale Semiconductor Inc., (2004).

7. Freescale, SMAC User’s Guide (SMACRM), Freescale Semiconductor Inc., (2004).

14 Freescale Semiconductor

