
BUFFALO MONITOR
for HC11 Development Boards

START-UP ...2
PROGRAM DESCRIPTION ...2
OPERATING PROCEDURES ..2

COMMAND LINE FORMAT...3
MONITOR COMMANDS ..4

ASM..6
BF - Block Fill...8
Breakpoint Set - BR...9
BULK ERASE EEPROM - BULK...11
BULK ERASE EEPROM AND CONFIG REGISTER - BULKALL ..12
CALL..13
GO ..14
HELP ..14
LOAD ...14
MEMORY DISPLAY - MD...15
MEMORY MODIFY - MM...16
MOVE...17
PROCEED...18
REGISTER MODIFY - RM...19
TRACE - T..20
TRANSPARENT MODE - TM..21
VERIFY ..22

ASSEMBLY / DISASSEMBLY PROCEDURES...23
DOWNLOADING PROCEDURES...24
INTERRUPT VECTORS ..25
UTILITY SUBROUTINES..26
S-RECORD INFORMATION ...28

S-RECORD CONTENT ..28
S-RECORD TYPES ..29
S-RECORD CREATION...29

START-UP

Applying power to the board causes a Power On Reset (POR) to occur. This POR
condition causes the MCU and user I/O port circuitry to be reset, and the monitor
invoked.

Both COM ports will display the following monitor prompt:

 BUFFALO 3.4AX - CMD11 User Fast Friendly Aid to Logical Operation

If the monitor prompt is not displayed (as shown above), press the user reset
switch. If the monitor prompt still cannot be displayed, the following steps are
to be performed.

 a. Disconnect power source.
 b. Check all cabling and power connections.
 c. Check hardware options and preparation procedures.
 d. Check all components for proper PCB placement.
 e. Check PC baud rate and terminal software setup for 9600 baud, 8 bits,

 1 stop, no parity.

PROGRAM DESCRIPTION

The monitor program is contained in EPROM (external to the MCU) at locations
$EOOO-$FFFF. It is a useful tool to help debug software written for the MCU. It
uses a command driven interface which allows users type commands at a prompt.
The monitor executes entered commands and the prompt reappears upon completion.
However, if a command is entered which causes execution of user target code
(i.e., GO) then control may or may not return to the monitor.

The monitor program uses the MCU internal RAM located at $0036-$00FF. The
control registers are located at $1000-$103F. The monitor program also uses
Output Compare 5 (OC5) and XIRQ for the TRACE instruction, therefore OC5 and XIRQ
should not be used in user routines being traced. Jumper JP13 should be installed
to enable this operation.

It should be noted (when designing code) that the BUFFALO uses the MCU on-chip
RAM locations $0036-$00FF leaving only 54 bytes for the user (i.e., $0000-$0035).
However, external ram is normally available from address $100 to $7FFF depending
on the size of ram installed.

OPERATING PROCEDURES

The BUFFALO monitor program is the resident firmware on the development board,
which provides a self contained operating environment. The monitor interacts
with the user through predefined commands that are entered from a terminal. The
user can use any of the commands supported by the monitor.

A standard input routine controls the MONITOR operation while the user types a
command line. Command processing begins only after the command line has been
terminated by depressing the keyboard carriage return (Return) key.

COMMAND LINE FORMAT

The command line format is as follows:
 ><command> [<parameters>](RETURN)

where:
 > MONITOR monitor prompt.
 <command> Command mnemonic(single letter for most commands).
 <parameters> Expression or address.
 (RETURN) RETURN keyboard key - depressed to enter command.

NOTES:

 (1) The command line format is defined using special characters which
 have the following syntactical meanings:
 < > Enclose syntactical variable
 [] Enclose optional fields
 []... Enclose optional fields repeated

 These characters are not entered by the used, but are for definition
 purposes only.

 (2) Fields are separated by any number space, comma, or tab characters.

 (3) All input numbers are interpreted as hexadecimal.

 (4) All input commands can be entered either upper or lower case
 lettering. All input commands are converted automatically to
 upper case lettering except for downloading commands sent to
 the host computer, or when operating in the transparent mode.

 (5) A maximum of 35 characters may be entered on a command line.
 After the 36th character is entered, the monitor automatically
 terminates the command entry and the terminal CRT displays the
 message "Too Long".

 (6) Command line errors may be corrected by backspacing (CTRL-H) or by
 aborting the command (CTRL-X or DELETE).

 (7) After a command has been entered, pressing (RETURN) a second time
 will repeat the command.

MONITOR COMMANDS

The monitor BUFFALO program commands are listed alphabetically by mnemonic in
Table 1. Each of the commands are described in detail following the tabular
command listing.

TABLE 1. Monitor Program Commands

ASM [<address>] Assembler/disassembler
BF <addr1> <addr2> <data> Block fill memory with data
BR [-] [<address>]... Breakpoint set
BULK Bulk erase EEPROM
BULKALL Bulk erase EEPROM + CONFIG register
CALL [<address>] Execute subroutine
G [<address>] Execute program
HELP Display monitor commands
LOAD <host download command> Download (S-records*) via host port
LOAD <T> Download (S-records*) via terminal port
MD [<addr1> [<addr2>]] Dump memory to terminal
MM [<address>] Memory modify
MOVE <addr1> <addr2> [,dest>] Move memory to new location
P Proceed/continue from breakpoint
RM[p,y,x,a,b,c,s,] Register modify
T [<n>] Trace $1-$FF instructions
TM Enter transparent mode
VERIFY <host download command> Compare memory to download data via host port
VERIFY <T> Compare memory to download data via terminal

Table 2 lists the compatible commands that are applicable to all
revisions of the BUFFALO monitor program. In most cases the initial
single letter of the command mnemonic or a specific symbol (shown below)
can be used. A minimum number of characters must be entered to at least
guarantee uniqueness from other commands (i.e., MD = MOVE, ME = MEMORY).

TABLE 2, Monitor Program Compatible Commands

ASM [<ADDRESS>] ASSEM
BF <addr1> <addr2> <data> FILL
BR [-] [<address>]... BREAK
BULK BULK
BULKALL BULKA
CALL [<address>] CALL
G [<address>] GO
HELP HELP, ?
LOAD <host download command> LOAD
LOAD <T> LOAD
MD [<addr1> [<addr2>]] DUMP
MM [<address>] MEMORY, /
MOVE <addr1> <addr2> [<dest>] MOVE
P PROCEED
RM [P,X,Y,A,B,C,S,] REGISTER
T [<n>] TRACE
TM HOST
VERIFY <host download command> VERIFY
VERIFY <T> VERIFY
ASM Assembler/Disassembler ASM

Additional terminal keyboard functions are as follows:

 (CTRL)A Exit transparent mode or assembler
 (CTRL)B Send break command to host in transparent mode
 (CTRL)H Backspace
 (CTRL)J Line feed <1f>
 (CTRL)W Wait/freeze screen (Note 1)
 (DELETE) Abort/cancel command
 (RETURN) Enter command/repeat last command
NOTES:

 (1) Execution is restarted by any terminal keyboard key.
 (2) When using the control key with a specialized command such as
 (CTRL)A, the (CTRL) key is depressed and held, then the A key
 is depressed. Both keys are then released.

Command line input examples in this chapter are amplified with the
following:

 (1) Underscore entries are user-entered on the terminal keyboard.
 (2) Command line input is entered when the keyboard (RETURN) key is depressed.

Typical example of this explanation is as follows:

 >MD F000 F100

ASM

ASM [<address>]

where: <address> is the starting address for the assembler operation.
 Assembler operation defaults to internal RAM if no
 address if given.

The assembler/disassembler is an interactive assembler/editor. Each
source line is converted into the proper machine language code and is
stored in memory overwriting previous data on a line-by-line basis at
the time of entry. In order to display and instruction, the machine
code is disassemble and the instruction mnemonic and operands are
displayed. All valid opcodes are converted to assembly language
mnemonics. All invalid opcodes are displayed on the terminal CRT as
"ILLOP".

The syntax rules for the assembler are as follows: (a.) All numerical
values are assumed to be hexadecimal. Therefore no base designators
(e.g., $ + hex, % + binary, etc.) are allowed. (b.) Operands must be
separated by one or more space or tab characters. (c.) Any characters
after a valid mnemonic and associated operands are assumed to be
comments and are ignored.

Addressing modes are designed as follows: (a.) Immediate addressing is
designated by preceding the address with a # sign. (b.) Indexed
addressing is designated by a comma. The comma must be preceded a one
byte relative offset (even if the offset is 00), and the comma must be
followed by an X or Y designating which index register to use (e.g., LDAA
00,X). (c.) Direct and extended addressing is specified by the length
for the address operand (1 or 2 digits specifies direct, 3 or 4 digits
specifies extended). Extended addressing can be forced by padding the
address operand with leading zeros. (d.) Relative offsets for branch
instructions are computed by the assembler. Therefore the valid
operand for any branch instruction is the branch-if-true address, not
the relative offset.

When a new source line is assembled, the assembler overwrites what was
previously in memory. If no new source line is submitted, or if there
is an error in the source line, then the contents of memory remain
unchanged. Each of the instruction pairs Arithmetic Shift Left
(ASL)/Logical Shift Left (LSL) have the same opcode, so disassembly
always displays the ASL mnemonic. If the assembler tries to assemble at
an address that is not in RAM, an invalid address message "rom-xxx" is
displayed on the terminal CRT (xxxx = invalid address.)

Assembler/disassembler subcommands are as follows. If the assembler
detects an error in the new source line, the assembler will output an
error message and then reopen the same address location.

 / Assemble the current line and then disassemble the same
 address location.

 ^ Assemble the current line and then disassemble the
 previous sequential address location.

 (RETURN) Assemble the current line and then disassemble the
 next opcode address.

 (CTRL)J Assemble the current line. If there isn't a new line to
 assemble, then disassemble the next sequential address
 location. Otherwise, disassemble the next opcode
 address.

 (CTRL)A Exit the assembler mode of operation.

 EXAMPLES DESCRIPTION

>ASM 0200 Immediate mode addressing, requires, # before
0200 STOP $FFFF operand.
 >LDAA #55
 86 55
0202 STOP $FFFF Direct mode addressing.
 >STAA C0
 97 C0
0204 STOP $FFFF Index mode, if offset = 0 (,X) will not be
 >LDS 0,X accepted.
 AE 00
0206 STOP $FFFF Branch out of range message.
 >BRA 0230

Branch out of range

0206 STOP $FFFF Branch offsets calculated automatically,
 >BRA 0230 address required as conditional branch operand.
 20 28
0208 STOP $FFFF
 >(CTRL)A Assembler operation terminated.

>

Refer to the end of this chapter for additional operational information
pertaining to the use of the assembler/disassembler.

BF - Block Fill

Block Fill

 BF <address1> <address2> <data>

where: <address1> Lower limit for fill operation.

 <address2> Upper limit for fill operation.

 <data> Fill pattern hexadecimal value.

The BF command allows the user to repeat a specific byte throughout a
determined user memory range. If an invalid address is specified, an
invalid address is specified, an invalid address message "rom-xxxx" is
displayed on the terminal CRT (xxxx = invalid address).

 EXAMPLES DESCRIPTION

>BF 0200 0230 FF Fill each byte of memory from 0200 through 0230
 with data pattern FF.

>BF 0200 0200 0 Set location 0200 to 0.

Breakpoint Set - BR

Breakpoint Set

 BR [-][<address>]...

where: [-] by itself removes (clears) all breakpoints.

 [-] proceeding [<address.]... removes individual or multiple
 addresses from breakpoint table.

The BR command sets the address into the breakpoint address table.
During program execution, a halt occurs to the program execution
immediately preceding the execution of any instruction address in the
breakpoint table. A maximum of four breakpoints may be set. After
setting the breakpoint, the current breakpoint addresses, if any, are
displayed. Whenever the G, CALL, or P commands are invoked, the monitor
program inserts breakpoints into the user code at the address specified
in the breakpoint table.

Breakpoints are accomplished by the placement of a software interrupt
(SWI) at each address specified in the breakpoint address table. The SWI
service routine saves and displays the internal machine state, then
restores the original opcodes at the breakpoint location before
returning control back to the monitor program.

SWI opcode cannot be executed or breakpointed in user code because the
monitor program uses the SWI vector. Only RAM locations can be
breakpointed. Branch on self instructions cannot be breakpointed.

 COMMAND FORMATS DESCRIPTION

BR Display all current breakpoints.

BR <address> Set breakpoint.

BR <addr1> <addr2>... Set several breakpoints.

BR - Remove all breakpoints.

BR -<addr1> <addr2>... Remove <addr1> and add <addr2>.

BR <addr1> - <addr2>... Add <addr1>, clear all entries, then add
 <addr2>.

BR <addr1> -<addr2>... Add <addr1>, then remove addr2>.

 EXAMPLES DESCRIPTION

>BR 0203 Set breakpoint at address location
 0203.

0203 0000 0000 0000
>

>BR 0203 0205 0207 0209 Sets four breakpoints. Breakpoints at
 same address will result in only one
0203 0205 0207 0209 breakpoint being set.
>

>BR Display all current breakpoints.

0203 0205 0207 0209
>

>BR - 0209 Remove breakpoint at address
 location 0209.
0203 0205 0207 0000
>

>BR 0209 - Clear breakpoint table and add C009.

 0209 0000 0000 0000
>

>BR - Remove all breakpoints.

0000 0000 0000 0000
>

>BR E000 Only RAM locations can be
 breakpointed.

rom-E000 Invalid Address message.
0000 0000 0000 0000
>

>BR 0205 0207 0209 0211 0213 Maximum of four breakpoints cam be
 set.

Full Buffer full message.
0205 0207 0209 0211
>

BULK ERASE EEPROM - BULK

 BULK

The bulk command allows the user to erase all MCU EEprom locations
($B600-$B7FF). A delay loop is built in such that the erase time is
about 5ms when running at 2 MHz E clock. This command is only
applicable for A38P and A95J mask sets, and all future mask sets.

 NOTE
 No erase verification message will be displayed upon
 completion of the bulk EEPROM erase operation. User
 must verify erase operation by examining one or two EEPROM
 locations using the MM or MD command.

 EXAMPLE DESCRIPTION

>BULK Bulk erase all MCU EEPROM locations
 ($B600-$B7FF).
> Prompt indicates erase sequence completed.

BULK ERASE EEPROM AND CONFIG REGISTER - BULKALL

 BULKALL

The bulkall command allows the user to erase all MCU EEPROM locations
($B600-$B7FF) including the configuration (CONFIG) register location
($103F). A delay loop is built in such that the erase time is about 5
ms when running at 2 MHz E Clock.

 NOTE
 No erase verification message will be displayed upon
 completion of the bulkall EEPROM and configuration
 register erase operation. User must verify erase
 operation by examining one or two EEPROM locations/configuration
 register location using the MM or MD command.

 CAUTION
Caution should be observed when erasing MCU EEPROM locations. MONITOR MCU
configuration (CONFIG) register ROMON bit is cleared to disable MCU
internal ROM, thereby allowing external EPROM containing the BUFFALO
program to control MONITOR operations.

 EXAMPLE DESCRIPTION

>BULKALL Bulk erase all MCU EEPROM ($B600-$B7FF) and
 configuration register ($103F) locations.

> Prompt indicates erase sequence completed.

CALL

 CALL [<address>]

where: <address> is the starting address where user program subroutine
 execution begins.

The CALL command allows the user to execute a user program subroutine.
Execution starts at the current program counter (PC) address location ,
unless a starting address is specified. Two extra bytes are placed onto
the stack before the return from interrupt (RTI) is issued so that the
first unmatched return from subroutine (RTS) encountered will return
control back to the monitor program. Thus any user program subroutine
can be called and executed via the monitor program. Program execution
continues until a breakpoint encountered, or the MONITOR reset switch S1 is
activated (pressed).

 EXAMPLE PROGRAM CALL, G, AND P COMMAND EXAMPLES

 >ASM 0200 0206 STX $FFFF
 >NOP
 0200 STX $FFF 01
 >LDAA #44 0207 STX $FFFF
 86 44 >NOP
 0202 STX $FFFF 01
 >STAA 07FC 0208 STX $FFFF
 B7 07 FC >RTS
 0205 STX $FFFF 39
 >NOP 0209 STX $FFFF
 01 >(CTRL)A

 EXAMPLE DESCRIPTION

>CALL 0200 Execute program subroutine.

P-0200 Y-DEFE X-F4FF A-44 B-FE C-D0 S-004A Displays status of
 registers at time RTS
 encountered (except P register
 contents).

GO

 G [<address>]

where: <address> is the starting address where user program execution
(free run in real time). The user may optionally specify a starting
address where execution is to begin. Execution starts at the current
program counter (PC) address location, unless a starting address is
specified. Program execution continues until a breakpoint us
encountered, or the MONITOR reset switch S1 is activated (pressed).

NOTE

Refer to example program shown and insert breakpoints at
locations $0205 and $0207 for the following G command example.

 EXAMPLE DESCRIPTION

>$0200 Begin program execution at PC
 address location 0200.

P-0205 Y-0000-X-00CD A-44 B-FB C-DO S-004A Breakpoint encountered at
 0205.

HELP

The HELP command enables the user available MONITOR command information to
be displayed on the terminal CRT for quick reference purposes.

LOAD

 LOAD <Host download command>

 LOAD <T>

where: <host download command> download S-records to MONITOR via host port.

 <T> download S-records to MONITOR via terminal
 port.

The LOAD command moves (downloads) object data in S-record format from an
external host computer to MONITOR. As the MONITOR monitor processes only valid
S-record data, it is possible for the monitor to hang up during a load operation.
If an S-record starting address points to and invalid memory location, the
invalid address message "error addr xxxx" is displayed on the Terminal CRT (xxxx
= invalid address).

EXAMPLES DESCRIPTION

>LOAD T MONITOR download command (via terminal port)

You can now us your PC Terminal program to send a file to the board.

MEMORY DISPLAY - MD

 MD [<address1> [<address2>]]

where: <address1> Memory starting address (optional).

 [<address2>] Memory ending address (optional).

The MD command allows the user to display a block of user memory
beginning at address1 and continuing to address2. If address2 is not
entered, 9 lines of 16 bytes are displayed beginning at address1. If
address1 is greater than address2, the display will default to the first
address. If no addresses are specified, 9 lines of 16 bytes are
displayed near the last memory location accessed.

EXAMPLES

>MD

F7D0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F7E0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F7F0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F800 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F810 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F820 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F830 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F840 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F850 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
>

>MD 0230 0220

0230 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
>

>MD 0200 0220

0200 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0210 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0220 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MEMORY MODIFY - MM

 MM [<address>]

CAUTION - Caution should be observed when modifying EEPROM locations.
 MONITOR MCU CONFIG register ROMON bit is cleared to disable MCU
 internal ROM.

where: <address> is the memory location at which to start display/modify.

The MM command allows the user to examine/modify contents in user memory
at specified locations in an interactive manner. Once entered, the MM
command has several submodes of operation that allow modification and
verification of data. The following subcommands are recognized.

 CTRL J or (Space Bar) Examine/modify next location.

 CTRL H or A Examine/modify previous location.

 / Examine/modify same location.

 RETURN Terminate MM operation.

 O Compute branch instruction relative
 offset.

If an invalid address is specified, the invalid address message "rom" is
displayed on the terminal CRT>

EXAMPLES DESCRIPTION

>MM 0700 Display memory location 0700.

0700 44 66/ Change data at 0700 and re-examine location.
0700 66 55A Change data at 0700 and backup one location.
06FF FF AA(RETURN) Change data at 06FF and terminate MM operation.

>MM 013C Display memory location.

013C F7 C18E0 51 Compute offset, result = $51.
013C F7

>MM 0200 Examine location $0200.

0200 55 80 C2 00 CE C4 Examine next location(s) using (Space Bar).

MOVE

 MOVE <address1> <address2> [<dest>]

where: <address1> Memory starting address.

 <address2> Memory ending address.

 [<dest>] Destination starting address (optional).

The MOVE command allows the user to copy/move memory to new memory
location. If the destination is not specified, the block of data
residing from address1 to address2 will be moved up one byte. Using the
MOVE command on EEPROM locations will program EPROM cells.

The MOVE command is useful when programming EEPROM. As an example, a
program is created in user RAM using the assemble, debugged using the
monitor, and then programmed into EEPROM with the MOVE command.

No messages will be displayed on the terminal CRT upon completion of the
copy/move operation, only the prompt is displayed.

CAUTION

Caution should be observed when moving data into EEPROM locations. MONITOR
MCU CONFIG register ROMON bit is cleared to disable MCU internal ROM.

 Example Description

>MOVE E000 E7FF 0200 Move data from locations $E000-$E7FF to
 locations $0200-$09FF.
>

PROCEED

 P

This command is used to proceed or continue program execution without
having to remove assigned breakpoints. This command is used to bypass
assigned breakpoints in a program executed by the G command.

NOTE

Refer to example program show for the following P command
example. Breakpoints have been inserted at locations $0205 and $0207

 EXAMPLE DESCRIPTION

>G 0200 Start execution at 0200.

P-0205 Y-7982 X-FF00 A-44 B-70 C-DO S-004A Breakpoint encountered at
> 0205.

>P Continue execution.

P-0207 Y-7982 X-FF00 A-44 B-70 C-C0 S-004A Breakpoint encountered at
 0207
>

REGISTER MODIFY - RM

 RM [p,,x,a,b,c,s]

The RM command is used to modify the MCU program counter (P), Y index
(Y), X index (X), A acculmulator (A), B accumulator (B), C accumulator
(C), and stack pointer (S) register contents.

 EXAMPLE DESCRIPTION

>RM Display P register contents.
P-0200 Y-798 X-FF00 A-44 B-70 C-C0 S-0054
P-0207 0220 Modify P register contents.

>

>RM X Display X register contents.
P-C007 Y-7982 X-FF00 A-44 B-70 C-C0 S-0054
X-FF00 0220 Modify X register contents.

>

>RM Display P register contents.
P-0220 Y0DEFE X-0220 A-DF B-DE C-D0 S-0054
P-0220 (SPACE BAR) Display remaining registers.
Y-DEFE (SPACE BAR)
X-0220 (SPACE BAR)
A-DF (SPACE BAR)
B-DE (SPACE BAR)
C-DO (SPACE BAR)
S-0054 SPACE BAR) (SPACE BAR) entered following
 stack pointer display will
 terminate RM command.

TRACE - T

 T [<n>]

where: <n> is the number (in hexadecimal, $1-FF max.) of instructions to
 execute.

The T command allows the user to monitor program execution on an
instruction-by-instruction basis. The user may optionally execute
several instructions at a time by entering a count value (up to $FF).
Execution starts at the current program counter (PC). The PC display
with the event message is of the next instruction to be executed. The
trace command operates by setting the OC5 interrupt to time out after
the first cycle of the first opcode fetched.

(Install JP13 on CMD11A Board to connect OC5 to XIRQ for Trace to operate)

 EXAMPLES DESCRIPTION

>T SINGLE TRACE

Op- 86
P-0202 Y-DEFE X-FFFF A-44 B-00 C-00 S-004B
>

>T 2 MULTIPLE TRACE (2)

Op-B7
P-0205 Y-DEFE X-FFFF A-44 B-00 C-00 S-004B

Op-01
P-0206 Y-DEFE X-FFFF A-44 B-00 C-00 S-004B
>

TRANSPARENT MODE - TM

 TM

The TM connects the MONITOR host port to the terminal port, which allows
direct communication between the terminal and the host computer. All
I/O between the ports are ignored by the MONITOR until the exit character is
entered from the terminal.

The TM subcommands are as follows:

 (CTRL)A Exit from transparent mode
 (CTRL)B Send break to host computer.

 EXAMPLE DESCRIPTION

>TM Enter transparent mode.

. Host computer input
.
.
(CTRL)A Task completed. Enter exit command.
> Exit transparent mode.

Refer to the downloading procedures at the end of this chapter for
additional information pertaining to the use of the TM command.
Verify

VERIFY

 VERIFY <T>

where: <host download command> compare memory to host port download
 data.

 <T> compare memory to terminal port
 download data.

The VERIFY command is similar to the LOAD command except that the VERIFY
command instructs the MONITOR to compare the downloaded S-record data to the
data stored in memory.

 EXAMPLES DESCRIPTION

>VERIFY cat trial.out Enter verify command.
 cat trial.out
done Verification completed.
>

>VERIFY cat trial.out Enter verify command.
 cat trial.out
Mismatch encountered.

error addr E000 Error message displaying first byte
 address.

Refer to the downloading procedures at the end of this chapter for
additional information pertaining to the use of the LOAD command.

ASSEMBLY / DISASSEMBLY PROCEDURES

The assembler/disassembler is an interactive assembler/editor. Each
source line is converted into the proper machine language code and is
stored in memory overwriting previous data on a line-by-line basis at
the time of entry. in order to display an instruction, the machine code
is disassembled and the instruction mnemonic and operands are displayed.
All valid opcodes are converted to assembly language nmemocs. All
invalid opcodes are displayed on the terminal CRT as "ILLOP".

The syntax rules for the assembler are as follows: (a.) All numerical
values are assumed to be hexadecimal. Therefore no base designators
(e,g,, $ = hex, % = binary, etc.) are allowed. (b.0 Operands must be
separated by one or more space or tab characters. (c.) Any characters
after a valid mnemonic and associated operands are assumed to be
comments and are ignored.

Addressing modes are designated as follows: (a.) Immediate addressing
is designated by preceding the address with a # sign. (b.) Index
addressing is designated by a comma. The comma must be preceded a one
byte relative offset (even if the offset is 00), and the comma must be
followed by an X or Y designating which index register to use (e.g.,
LDAA 00,X). (c.) Direct and extending addressing is specified by the
length of the address operand (1 or 2 digits specifies direct, 3 0r 4
digits specifies extended). Extended addressing can be forced by
padding the address operand with leading zeros. (d.) Relative offsets
for branch instructions are computed by the assembler. Therefore the
valid operand for any branch instruction is the branch-if-true address,
not the relative offset.

Assembler/disassembler subcommands are as follows. If the assembler
directs an error in the new source line, the assembler will output an
error message and then reopen the same address location.

 / Assemble the current line and then disassemble the same
 address location.

 ^ Assemble the current line and then disassemble the
 previous sequential address location.

 (RETURN) Assemble the current line and then disassemble the next
 opcode address.

 (CTRL)J Assemble the current line. If there isn't a new line to
 assemble, then disassemble the next sequential address
 location. Otherwise, disassemble the next opcode
 address.

 (CTRL)A Exit the assembler mode of operation.

When a new source line is assembles, the assembler overwrites what was
previously in memory. If now new source line is submitted, or if there
is an error in the source line, then the contents of memory remain
unchanged. Each of the instruction pairs Arithmetic Shift Left
(ASL)/Logical Shift Left (LSL) have the same opcode, so disassembly
always displays the ASL mnemonic. If the assembler tries to assemble at
an address that is not in RAM, an invalid address message "rom-xxx" is

displayed on the terminal CRT (xxxx = invalid address).

DOWNLOADING PROCEDURES

This portion of text describes the downloading procedures. The
downloading operation enables the user to transfer information from a
host computer to the MONITOR (or target system memory) using the LOAD
command. The VERIFY command is used to compare the S-record data to
memory data.

Specific downloading procedures are described enabling the user to
IBM Personal Computer (PC) host computer system. Downloading
operations are accomplished utilizing the TM and LOAD commands. The TM
(Transport Mode) command connects the MONITOR host port to the terminal
port, which allows direct communication between the terminal and host
computer. All I/O between the ports are ignored by the MONITOR until the
exit command (CTRL)A is entered from the terminal. The LOAD command
moves data information in S-record format from an external host computer to the
MONITOR user RAM.

The following pages provide examples and descriptions of how to perform
downloading operations in conjunction with an IBM PC host computer.

Prior to performing any IBM PC operation, ensure that both IBM PC and
MONITOR baud rates are identical.

NOTE
IBM PC to MONITOR interconnection is accomplished by a single RS-232C cable
assembly. This cable is connected to the MONITOR terminal I/O port
connector COM1 for downloading operations.

To perform the IBM PC to MONITOR downloading procedure, perform/observe the
following:

 EXAMPLE DESCRIPTION

C>KERMIT IBM PC prompt. Enter KERMIT
IBM-PC Kermit-MS VX.XX program.
Type ? for help

Kermit-MS>SET BAUD 9600 Set IBM PC baud rate.
Kermit-MS>-CONNECT Connect IBM PC to MONITOR.

[Connecting to host, type Control-] C to return to PC]

(RETURN)

>LOAD T MONITOR download command (via terminal
 port) entered.
(CTRL)]C
Kermit-MS>PUSH

The IBM Personal Computer DOS
Version X.XX (C)Copyright IBM Corp 1981, 1982, 1983

C>TYPE (File Name) > COM1 Motorola S-record file name.

C>EXIT S-record downloading completed.

Kermit-MS>CONNECT Return to monitor BUFFALO program.

>(CTRL)]C
Kermit-MS>EXIT Exit Kermit program.

INTERRUPT VECTORS

Interrupt vectors residing in MCU internal Rom are accessible as
follows. Each vector is assigned a three byte field residing in
MONITOR memory map locations $0000-$0100. This is where the monitor
program expects the MCU RAM to reside. Each vector points to a
three byte field which is used as a jump table to the vector
service routine. The following Table lists the interrupt vectors
and associated three byte field.

 Interrupt Vector Jump Table

 INTERRUPT VECTOR FIELD

 Serial communications Interface (SCI) $00C4-$00C6
 Serial Peripheral Interface (SPI) $00C7-$00C9
 Pulse Accumulator Input Edge $00CA-$00CC
 Pulse Accumulator Overflow $00CD-$00CF
 Timer Overflow $00DO-$00D2
 Timer Output Compare 5 $00D3-$00D5
 Timer Output Compare 4 $00D6-$00D8
 Timer Output Compare 3 $00D9-$00DB
 Timer Output Compare 2 $00DC-$00DE
 Timer Output Compare 1 $00DF-$00E1
 Timer Input Capture 3 $00E2-$00E4
 Timer Input Capture 2 $00E5-$00E7
 Timer Input Capture 1 $00E8-$00EA
 Real Time Interrupt $00EB-$00ED
 IRQ $00EE-$00FO
 XIRQ $00F1-$00F3
 Software Interrupt (SWI) $00F4-$00F6
 Illegal Opcode $00F7-$00F9
 Computer Operating Properly (COP) $00FA-$00FC
 Clock Monitor $00FD-$00FF

To use vectors specified in the table, the user must insert a
jump extended opcode in the byte field of the vector required.
For example, for the IRQ vector, the following is performed:

 a. Place $7E (JMP) at location $00EE.
 b. Place IRQ service routine address at locations $00EF and $00F0.

 $00EE 7E 80 00 JMP IRQ SERVICE

UTILITY SUBROUTINES

Several subroutines exist that are available for performing I/O
tasks. A jump table has been set up in ROM directly beneath the
interrupt vectors. To use these subroutines, execute a jump to
subroutine (JSR) command to the appropriate entry in the jump
table. By default, all I/O performed with these routines are
sent to the terminal port. Redirection of the I/O port is
achieved by placing the specified value (O=SCI, 1=ACIA)into RAM
location IODEV.

Utility subroutines available to the user are as follows:

 UPCASE If character in accumulator A is lower case alpha,
 convert to upper case.

 WCHEK Test character in accumulator A and return with Z
 bit set if character is whitespace (space, comma,
 tab).

 DCHEK Test character in accumulator A and return with Z
 bit set if character is delimiter (carriage return
 or whitespace).

 INIT Initialize I/O device.

 INPUT Read I/O device.

 OUTPUT Write I/O device.

 OUTLHLF Convert left nibble of accumulator A contents to
 ASCII and output to terminal port.

 OUTRHLF Convert right nibble of accumulator A contents to
 ASCII and output to terminal port.

 OUTA Output accumulator A ASCII character.

 OUTlBYT Convert binary byte at address in index register X
 to two ASCII characters and output. Returns
 address in index register X pointing to next byte.

 OUTlBSP Convert binary byte at address in index register X
 to two ASCII characters and output followed by a
 space. Returns address in index register

 OUT2BSP Convert two consecutive binary bytes starting at
 address in index register X to four ASCII
 characters and output followed by a space.
 Returns address in index register X pointing to
 next byte.

 OUTCCRLF Output ASCII carriage return followed by a line

 feed.

 OUTSTRG Output string of ASCII bytes pointed to by address
 in index register X until character is na end of
 transmission ($04).

 OUTSTRGO Same as OUTSTRG except leading carriage return
 and line feed is skipped.

 INCHAR Input ASCII character to accumulator A and echo
 back. This routine loops until character is
 actually received.

Utility jump subroutines for performing I/O tasks are shown
below. These subroutines are in ROM and are programmed as jumps.
To use the jump subroutine, execute a JSR to the applicable
address shown below.

$FFAO JMP UPCASE Convert character to uppercase
$FFA3 JMP WCHEK Test character for whitespace
$FFA6 JMP DCHEK Check character for delimiter
$FFA9 JMP INIT Initialize I/O device
$FFAC JMP INPUT Read I/O device
$FFAF JMP OUTPUT Write I/O device
$FFB2 JMP OUTLHLF Convert left nibble to ASCII and output
$FFB5 JMP OUTRHLF Convert right nibble to ASCII and output
$FFB8 JMP OUTA Output ASCII character
$FFBB JMP OUTlBYT Convert binary byte to 2 ASCII
 characters and output
$FFBE JMP OUT1BSP Convert binary byte to 2 ASCII
 characters and output followed
 by space
$FFCl JMP OUT2BSP Convert 2 consecutive binary bytes to 4
 ASCII characters and output
 followed by space.
$FFC4 JMP OUTCRLF Output ASCII carriage return followed by
 line feed
$FFC7 JMP OUTSTRG Output ASCII string until end of
 transmission ($04)
$FFCA JMP OUTSTRGO Same as OUTSTRG except leading carriage
 return and line fees is skipped
$FFCD JMP INCHAR Input ASCII character and echo back

S-RECORD INFORMATION

The Motorola S-record format was devised for the purpose of encoding
programs or data files in a printable format for transportation between
computer systems. This transportation process can therefore be
monitored and the S-records can be easily edited.

S-RECORD CONTENT

When observed, S-records are essentially character strings made of
several fields which identify the record type, record length, memory
address, code/data, and checksum. Each byte of binary data is encoded
as a 2-character hexadecimal number: the first character representing
the high-order 4 bits, and the second the low-order 4 bits of the byte.

Five fields which compromise an S-record are shown below:

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM
where the fields are composed as follows:

 PRINTABLE
FIELD CHARACTERS CONTENTS

Type 2 S-record type - S0, S1, etc.

Record 2 Character pair count in the record,
length excluding the type and record length.

Address 4,6, 2-, 3-, or 4-byte address at which
 or 8 the data field is to be loaded into
 memory.

Code/data 0-2n From 0 to n bytes of executable code,
 memory loadable data, or descriptive
 information. For compatibility with
 teletypewriters, some programs may
 limit the number of bytes to as few as
 28 (56 printable characters in the S-
 record.

Checksum 2 Least significant byte of the one's
 complement of the sum of the values
 represented by the pairs of
 characters making up the record
 length, address, and the code/data
 fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-
record may have an initial field to accommodate other data such as line
numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count)
and checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several
needs of the encoding, transportation, and decoding functions. The
various Motorola upload, download, and other record transportation
control programs, as well as cross assemblers, linkers, and other file-
creating or debugging programs, utilize only those S-records which serve
the purpose of the program. for specific information on which S-records
are supported by a particular program, the user manual for that program
must be consulted.

 NOTE

The MONITOR monitor supports only the S1 and S9 records. All data before
the first S1 record is ignored. Thereafter, all records must be S1 type
until the S9 record terminates data transfer.

An S-record format may contain the following record types:

 S0 Header record for each block of S-records. The code/data
 field may contain any descriptive information identifying
 the following block of S-records. The address field is
 normally zeroes.

 S1 Code/data record and the 2-byte address at which the
 code/data is to reside.

 S2-S8 Termination record for a block of S1 records. Address
 fields may optionally contain the 2-byte address of the
 instruction to which control is to be passed. If not
 specified, the first entry point specification
 encountered in the input will be used. There is no
 code/data field.

Only one termination record is used for each block of S-records.
Normally, only one header record is used, although it is possible for
multiple header records to occur.

S-RECORD CREATION

S-record format programs ma be produce by several dump utilities,
debuggers, or several cross assemblers or cross linkers. Several
programs are available for downloading a file in S-record format from a
host system to an 8-bit or 16-bit microprocessor-based system.

S-RECORD EXAMPLE

Shown below is a typical S-record format, as printed or displayed:

 S00600004844521B
 S1130000285F245F2212226A000424290008237C2A
 S11300100002000800082629001853812341001813
 S113002041E900084E42234300182342000824A952
 S107003000144ED492

 S9030000FC

The above format consists of an S0 header record, four S1 code/data
records, and an S9 termination record.

The S0 header record is comprised of the following character pairs:

 S0 S-record type S0, indicating a header record.

 06 Hexadecimal 06 (decimal 06), indicating six character pairs
 (or ASCII bytes) follow.

 00 Four-character 2-byte address field, zeroes.
 00

 48
 44 ASCII H, D, and R - "HDR".
 52

 1B Checksum of SO record.

The first S1 code/data record is explained as follows:

 S1 S-record type S1, indicating a code/data record to be
 loaded/verified at a 2-byte address.

 13 Hexadecimal 13 (decimal 19), indicating 19 character pairs,
 representing 19 bytes of binary data, follow.

 00 Four-character 2-byte address field; hexadecimal address 0000,
 00 indicates location where the following data is to be loaded.

The next 16 character pairs are the ASCII bytes of the actual program
code/data. In this assembly language example, the hexadecimal opcodes
of the program are written in sequence in the code/data fields of the S1
records;

 OPCODE INSTRUCTION

28 5F BHCC $0161
24 5F BCC $0163
22 12 BHI $0118
22 6A BHI $0172
00 04 24 BRSET 0,$04,$012F
29 00 BHCS $010D
08 23 7C BRSET 4,$23,$018C

. (Balance of this code is continued in the code/data fields
. of the remaining S1 records, and stored in memory location
. 0010, etc..)

2A Checksum of the first S1 record.

The second and third S1 code/data records each also contain $13 (19)
character pairs and are ended with checksums 13 and 51, respectively.
The fourth S1 code/data record contains 07 character paris and has a
checksum of 92.

The S9 termination record is explained as follows:

 S9 S-record type S9, indicating a termination record.

 03 Hexadecimal 03, indicating three character pairs (3 bytes)
 follow.

 00 Four-character 2-byte address field, zeroes.
 00

 FC Checksum of S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII
in this example) representation of the binary bits which are actually
transmitted. For example, the first S1 record above is sent as shown
below.

type length address code/data checksum

S 1 1 3 0 0 0 0 2 8 5 F 2 A

53 31 31 33 30 30 30 30 32 38 35 46 32 41

