BUFFALO MONITOR

for HC11 Development Boards

START-UP ettt bttt e bt bt e he e bt eb e eh e e aeeeE e e R e eh e £ ae e eE e AR e £ Re e b e eE e eb e e R s e b e eb e e be e b e ebenbesaeebenbenbe e e e nre e 2
PROGRAM DESCRIPTIONc.ueiitiittitieieste sttt sttt st st saeesesbesbesseesesbesbesse e seabesbeeaeeabesbesheeaeesbesbeeaeesesbesbesseenbeseas 2
OPERATING PROCEDURESooitiitiiiiiti ittt sttt bttt s he et e b sbe e et e b e s b e e s e besbeebe e b e sbesbesaeebesbesbeenneneeee 2
COMMAIND LINE FORMAT .ttt sttt sttt ettt sttt ettt b et be bt she e e e s be s b e s he e e e s b e sb e e ae e b e s Eeeheeseenbenbeehe et e sbesbeennenbesnas 3
MONITOR COMMANDS ...ttt sttt sttt ettt he e e sbe bt ehe e b e s besEe e he e beeEesb e ea e e abesEeeheeaeesbesbeeae e b e sbesbeeneebeneas 4
F S 1Y T USSP PRURRPT 6

B = BIOCK Fill ...ttt ettt b et b e e bt bbbt e bt e bt e r e e b e b e e n e e n e n e n e e 8
BIEaKPOINT SBE - BR......eciiiiiiieiie ettt ettt ettt ettt a et e s et e e s be e e ke e e ehee e sabe e oabe e e be e e ebee e eabeeeabe e e beeeabeeeaaeeennreaaa 9
BULK ERASE EEPROM = BULK ...ttt st sb s b e e bbb b saeenne e e 11
BULK ERASE EEPROM AND CONFIG REGISTER - BULKALLcceiiiiiniieere e 12
107 I OO U PR PRURPP 13

LC T LU U RO PRSP 14

L = TSP URURPP 14
(@ N B TS TP PO PRURPP 14
MEMORY DISPLAY = MDDttt sttt sttt st b e b e s bt et et b e s bt e se e sbesbesh e e b e s b e sb e e se et e abesbeenneneeee 15
MEMORY MODIFY = MM ..ottt bbb bbb b bt e st e sb e eb e sh e e b e s b e sb e e he e b e sbesaeenneseeee 16
YL@ TSP URURPP 17
PROGCEED. ...ttt ettt ettt b et b e b e s bt e as e e he S E e e R e e b e SR e £ E e eae e b e e E e She e Re e eE e eheeh e e m b e e b e sbeeRe e benbesbeennenreee 18
REGISTER MODIFY = RM ...ttt sttt st be b e e bbbt e st e sbeebesh e e b e s b e sbesae et e sbesreanneseeee 19
LT I LTRSS U PR PRURPRIN 20
TRANSPARENT MODE = TM. .ottt ettt b et be b e e b e sb e bt e e e sbesbesbe e e e sbesbesanene st 21

VA = L TP P PP PRUPP 22
ASSEMBLY / DISASSEMBLY PROCEDURES.........cccoiitittiieitsitste ettt sttt sttt ee st b sse bt sbe e sbe b seeesee e nee 23
DOWNLOADING PROCEDURES.........cutittittiiiiistt sttt sttt st e et st sbe s sbesbesheeeesbesbeeaeesbesbesbeaseesbesbesneennenaens 24
INTERRUPT VECTORS ...ttt sttt sttt e et sbeshe e sesbe s b e s ae et e s b e sheeae e s be e beeh e e b e e b e eb e eheebesb e s bt emeenbesbesbeenneseeee 25
UTILITY SUBROUTINES.......cciiittittieeiente sttt sttt st be e s sbesbe e et e sbesheeas e abesbesh e e seesbesbeeaeeabesbesbeaseesbesbesbeennenben 26
S RECORD INFORMATION ...ttt sttt sttt ettt st st sae b sbeeseesbesbesbeeasesbeabeebeessesbesbesheeaeesbesbesaeaneesbesbesneenseneens 28
S RECORD CONTENTotiitiettite sttt sttt sttt beeseesbe b sbeessesbesbesse e besbesb e e ae e beeEeeh e e aeeabeabeeaeebesbesbeemeesbesbesbeennenbens 28
ST RECORD TYPES ... ittt sttt b et b e bt b et e s bt s b e e b e et e e At e b e e R e e b e e Ee e h e e R s e eb e ebeeaeebesbesbeemeesbesbesaeennenbens 29

START-UP

Applyi ng power to the board causes a Power On Reset (POR) to occur. This POR
condition causes the MCU and user 1/O port circuitry to be reset, and the nonitor
i nvoked.

Both COM ports will display the follow ng nonitor pronpt:
BUFFALO 3. 4AX - CMD11 User Fast Friendly Aid to Logical Cperation

If the monitor pronpt is not displayed (as shown above), press the user reset
switch. |If the nonitor pronpt still cannot be displayed, the follow ng steps are
to be performned.

Di sconnect power source.

Check all cabling and power connecti ons.

Check hardware options and preparation procedures.

Check all conponents for proper PCB pl acenent.

Check PC baud rate and term nal software setup for 9600 baud, 8 bits,
1 stop, no parity.

PoooTw

PROGRAM DESCRIPTION

The nmonitor programis contained in EPROM (external to the MCU) at |ocations
$ECOO $FFFF. It is a useful tool to help debug software witten for the MCU. It
uses a command driven interface which allows users type comrands at a pronpt.

The nonitor executes entered commands and the pronpt reappears upon conpl etion
However, if a command is entered which causes execution of user target code
(i.e., GO then control may or may not return to the nonitor

The nmonitor programuses the MCU internal RAM | ocated at $0036- $00FF. The
control registers are located at $1000-$103F. The nonitor program al so uses

Qut put Conpare 5 (OC5) and XIRQ for the TRACE instruction, therefore OC5 and Xl RQ
shoul d not be used in user routines being traced. Junper JP13 should be installed
to enable this operation

It should be noted (when designing code) that the BUFFALO uses the MCU on-chip
RAM | ocat i ons $0036- $00FF | eaving only 54 bytes for the user (i.e., $0000-$0035).
However, external ramis nornally available from address $100 to $7FFF dependi ng
on the size of raminstall ed.

OPERATING PROCEDURES

The BUFFALO nmonitor programis the resident firmwvare on the devel opment board,
whi ch provides a self contained operating environment. The nonitor interacts
with the user through predefined commands that are entered froma termnal. The
user can use any of the conmands supported by the nonitor

A standard input routine controls the MONI TOR operation while the user types a
command |ine. Command processing begins only after the conmand |ine has been
term nated by depressing the keyboard carriage return (Return) key.

COMMAND LINE FORMAT

The co
>

wher e:
>
<
<

(
NOTES:

(1)

(2)
(3)
(4)

(5)

(6)

(7)

nmrand line format is as follows:
<command> [<par anet er s>] (RETURN)
MONI TOR noni t or pronpt.
conmand> Command menoni c(single letter for nost commands).
par anmet er s> Expr essi on or address.
RETURN) RETURN keyboard key - depressed to enter command.

The conmand line format is defined using special characters which
have the follow ng syntactical neanings:

< > Encl ose syntactical variable
[] Encl ose optional fields
[]... Enclose optional fields repeated

These characters are not entered by the used, but are for definition
pur poses only.

Fiel ds are separated by any nunber space, conma, or tab characters.
Al input nunbers are interpreted as hexadeci nal

Al'l input commands can be entered either upper or |ower case
lettering. Al input commands are converted automatically to
upper case lettering except for downl oadi ng comands sent to
t he host conputer, or when operating in the transparent node.

A maxi mum of 35 characters may be entered on a command | i ne.
After the 36th character is entered, the nonitor automatically
term nates the command entry and the term nal CRT displays the
message "Too Long".

Command line errors may be corrected by backspaci ng (CTRL-H) or by
aborting the command (CTRL- X or DELETE)

After a command has been entered, pressing (RETURN) a second tine
will repeat the conmand.

MONITOR COMMANDS

The noni tor BUFFALO program conmands are |isted al phabetically by mmenonic in
Table 1. Each of the commands are described in detail follow ng the tabular
command |i sting.

TABLE 1. Monitor Program Commands

ASM [<addr ess>] Assenbl er/ di sassenbl er

BF <addr 1> <addr 2> <dat a> Bl ock fill nenory with data

BR [-] [<address>]... Br eakpoi nt set

BULK Bul k erase EEPROM

BULKALL Bul k erase EEPROM + CONFI G regi ster

CALL [<address>] Execut e subroutine

G [<addr ess>] Execut e program

HELP Di spl ay nonitor conmands

LOAD <host downl oad command> Downl oad (S-records*) via host port

LCAD <T> Downl oad (S-records*) via term nal port

MD [<addr 1> [<addr 2>]] Dunp nenory to term nal

MM [<addr ess>] Menory nodify

MOVE <addr 1> <addr2> [, dest >] Move nenory to new | ocation

P Proceed/ conti nue from breakpoi nt
RMp,vy,x,a,b,c,s,] Regi ster nodify

T [<n>] Trace $1-$FF instructions

™ Enter transparent node

VERI FY <host downl oad conmand> Conpare nmenory to downl oad data via host port
VERI FY <T> Conpare nmenory to downl oad data via term nal

Table 2 lists the conpati ble commands that are applicable to all

revi sions of the BUFFALO nonitor program |In nost cases the initial
single letter of the command menonic or a specific synbol (shown bel ow)
can be used. A mninmm nunber of characters nust be entered to at |east
guar ant ee uni queness from ot her commands (i.e., MD = MOVE, ME = MEMORY).

TABLE 2, Monitor Program Compatible Commands

ASM [<ADDRESS>] ASSEM

BF <addr 1> <addr 2> <dat a> FI LL

BR [-] [<address>]... BREAK
BULK BULK
BULKALL BULKA
CALL [<address>] CALL

G [<addr ess>] (€O)

HELP HELP, 2
LOAD <host downl oad command> LQAD
LOAD <T> LOAD

MD [<addr 1> [<addr 2>]] DUVP

MM [<addr ess>] MEMORY, /
MOVE <addr 1> <addr 2> [<dest >] MOVE

P PROCEED
RMI[P, X Y, ABCS,] REG STER
T [<n>] TRACE
™ HOST
VERI FY <host downl oad command> VERI FY
VERI FY <T> VERI FY

ASM Assenbl er/ D sassenbl er ASM

Addi ti onal term nal keyboard functions are as follows:

(CTRL)A Exit transparent node or assenbl er
(CTRL)B Send break conmand to host in transparent node
(CTRL)H Backspace
(CTRL) J Li ne feed <1f>
(CTRL)W Wit/ freeze screen (Note 1)
(DELETE) Abort/cancel command
(RETURN) Enter conmand/repeat |ast command
NOTES:

(1) Execution is restarted by any term nal keyboard key.

(2) When using the control key with a specialized conmand such as
(CTRL)A, the (CTRL) key is depressed and held, then the A key
is depressed. Both keys are then rel eased.

Command |ine input exanples in this chapter are anplified with the
fol | owi ng:

(1) Underscore entries are user-entered on the term nal keyboard.
(2) Command line input is entered when the keyboard (RETURN) key is depressed.

Typi cal exanple of this explanation is as foll ows:

>MD FOOO F100

ASM

ASM [<addr ess>]

where: <address> is the starting address for the assenbl er operation
Assenbl er operation defaults to internal RAMif no
address if given.

The assenbl er/di sassenbler is an interactive assenbler/editor. Each
source line is converted into the proper machine | anguage code and is
stored in nmenory overwiting previous data on a |line-by-line basis at
the tine of entry. 1In order to display and instruction, the nachine
code is disassenble and the instruction menonic and operands are

di splayed. All valid opcodes are converted to assenbly | anguage
mmenoni cs. Al invalid opcodes are displayed on the termnal CRT as
"1 LLOP".

The syntax rules for the assenbler are as follows: (a.) Al nunerica
val ues are assunmed to be hexadecimal. Therefore no base designators
(e.g., $ + hex, %+ binary, etc.) are allowed. (b.) Operands nust be
separated by one or nore space or tab characters. (c.) Any characters
after a valid menonic and associ ated operands are assuned to be
comments and are ignored.

Addr essi ng nodes are designed as follows: (a.) Imediate addressing is
designated by preceding the address with a # sign. (b.) Indexed
addressing is designated by a comma. The comma nust be preceded a one
byte relative offset (even if the offset is 00), and the comma nust be
followed by an X or Y designating which index register to use (e.g., LDAA
00,X). (c.) Direct and extended addressing is specified by the |ength
for the address operand (1 or 2 digits specifies direct, 3 or 4 digits
speci fies extended). Extended addressing can be forced by padding the
address operand with |leading zeros. (d.) Relative offsets for branch
instructions are conmputed by the assenbler. Therefore the valid
operand for any branch instruction is the branch-if-true address, not
the relative offset.

VWhen a new source line is assenbl ed, the assenbler overwites what was
previously in nmenmory. |If no new source line is submitted, or if there
is an error in the source line, then the contents of nmenory remain
unchanged. Each of the instruction pairs Arithnetic Shift Left

(ASL)/ Logi cal shift Left (LSL) have the same opcode, so disassenbly

al ways di splays the ASL menonic. |If the assenbler tries to assenble at
an address that is not in RAM an invalid address nessage "rom xxx" is
di spl ayed on the term nal CRT (xxxx = invalid address.)
Assenbl er/ di sassenbl er subconmmands are as follows. |[If the assenbler

detects an error in the new source line, the assenbler will output an
error nmessage and then reopen the same address | ocation

/ Assenbl e the current line and then di sassenble the sanme
address | ocati on.

N Assenbl e the current line and then di sassenble the
previ ous sequential address |ocation

(RETURN)

(CTRL)J
(CTRL) A
EXAMPLES

>ASM 0200

0200 STOP $FFFF
>LDAA #55
86 55

0202 STOP $FFFF
>STAA OO
97 Q0

0204 STOP $FFFF
>LDS 0, X
AE 00

0206 STOP $FFFF
>BRA 0230

Branch out of r

0206 STOP $FFFF
>BRA 0230
20 28

0208 STOP $FFFF
>(CTRL) A

>

Refer to the end of this chapter for additiona

Assenbl e the current |line and then di sassenble the

next opcode address.
If there isn't a newline to

Assenbl e the current |ine.

assenbl e, then di sassenbl e the next sequential address
| ocation. O herw se, disassenble the next opcode
address.

Exit the assenbl er node of operation.

DESCRI PTI ON
| mredi at e node addressing, requires, # before
oper and.
Di rect node addressing.
I ndex node, if offset = 0 (,X) will not be
accept ed.

Branch out of range nessage.

ange
Branch offsets cal cul ated automatically,

address required as conditional branch operand.

Assenbl er operation term nated.

operational information

pertaining to the use of the assenbl er/di sassenbl er.

BF - Block Fill

Bl ock Fill

BF <addressl1l> <address2> <dat a>

where: <addressl> Lower limt for fill operation.

<addr ess2> Upper limt for fill operation.

<dat a> Fill pattern hexadeci mal val ue.

The BF conmand al l ows the user to repeat a specific byte throughout a
determ ned user nmenory range. |If an invalid address is specified, an
invalid address is specified, an invalid address nessage "rom xxxx" is
di spl ayed on the term nal CRT (xxxx = invalid address).

EXAMPLES DESCRI PTI ON
>BF 0200 0230 FF Fill each byte of nmenory from 0200 through 0230

with data pattern FF.

>BF 0200 0200 O Set | ocation 0200 to O.

Breakpoint Set - BR

Br eakpoi nt Set
BR [-][<address>]. ..
where: [-] by itself renoves (clears) all breakpoints.

[-] proceeding [<address.]... renoves individual or nultiple
addresses from breakpoi nt table.

The BR conmand sets the address into the breakpoint address table.

Duri ng program execution, a halt occurs to the program execution

i medi ately preceding the execution of any instruction address in the
breakpoint table. A maxi num of four breakpoints nmay be set. After
setting the breakpoint, the current breakpoint addresses, if any, are

di spl ayed. \Whenever the G CALL, or P conmands are invoked, the nonitor
programinserts breakpoints into the user code at the address specified
in the breakpoint table.

Br eakpoi nts are acconplished by the placenent of a software interrupt
(SW) at each address specified in the breakpoint address table. The SW
service routine saves and displays the internal nachine state, then
restores the original opcodes at the breakpoint |ocation before
returning control back to the nonitor program

SW opcode cannot be executed or breakpointed in user code because the
nmoni t or program uses the SW vector. Only RAM I ocations can be
br eakpoi nted. Branch on self instructions cannot be breakpoi nted.

COVWWAND FORNATS DESCRI PTI ON

BR Di splay all current breakpoints.

BR <address> Set breakpoint.

BR <addr 1> <addr 2>. .. Set several breakpoints.

BR - Renove all breakpoints.

BR - <addr 1> <addr 2>. .. Renove <addr 1> and add <addr 2>.

BR <addr 1> - <addr2>... Add <addr 1>, clear all entries, then add

<addr 2>.

BR <addr 1> - <addr2>. .. Add <addr 1>, then renove addr2>
EXAMPLES DESCRI PTI ON

>BR 0203 Set breakpoint at address |ocation

0203.

0203 0000 0000 0000
>

>BR 0203 0205 0207 0209 Sets four breakpoints. Breakpoints at

same address will result in only one
0203 0205 0207 0209 br eakpoi nt bei ng set.
>

>BR Di splay all current breakpoints.

0203 0205 0207 0209
>

>BR - 0209 Renove breakpoi nt at address
| ocati on 0209.

0203 0205 0207 0000

>

>BR 0209 - Cl ear breakpoint table and add CO009.

0209 0000 0000 0000
>

>BR - Renove all breakpoints.

0000 0000 0000 0000
>

>BR E000 Only RAM | ocati ons can be
br eakpoi nt ed.

rom EOOO Invalid Address nessage.
0000 0000 0000 0000
>

>BR 0205 0207 0209 0211 0213 Maxi mum of four breakpoints cam be
set.
Ful | Buf fer full nessage.

0205 0207 0209 0211
>

BULK ERASE EEPROM - BULK

BULK

The bul k command all ows the user to erase all MCU EEprom | ocati ons
($B600-$B7FF). A delay loop is built in such that the erase tine is
about 5nms when running at 2 Mz E clock. This command is only
applicabl e for A38P and A95J mask sets, and all future mask sets.

NOTE
No erase verification message will be displayed upon
conpl etion of the bul k EEPROM erase operation. User
must verify erase operation by exam ning one or two EEPROM
| ocations using the MM or NMD conmand.
EXAMPLE DESCRI PTI ON
>BULK Bul k erase all MCU EEPROM | ocati ons

($B600- $B7FF) .
> Pronmpt indicates erase sequence conpl et ed.

BULK ERASE EEPROM AND CONFIG REGISTER - BULKALL

BULKALL

The bul kal I conmand al l ows the user to erase all MCU EEPROM | ocati ons
($B600- $B7FF) i ncluding the configuration (CONFIG register |ocation
($103F). A delay loop is built in such that the erase tine is about 5
ms when running at 2 Mz E d ock.

NOTE
No erase verification message will be displayed upon
conpl etion of the bul kall EEPROM and confi guration
regi ster erase operation. User nust verify erase
operation by exam ning one or two EEPROM | ocati ons/ confi guration
regi ster location using the WM or NMD conmmand.

CAUTI ON
Caution shoul d be observed when erasi ng MCU EEPROM | ocati ons. MONI TOR MCU
configuration (CONFIG register ROMON bit is cleared to disable MCU
internal ROM thereby allow ng external EPROM containing the BUFFALO
programto control MONI TOR operations.

EXAMPLE DESCRI PTI ON

>BULKALL Bul k erase all MCU EEPROM ($B600- $B7FF) and
configuration register ($103F) | ocations.

> Prompt indicates erase sequence conpl et ed.

CALL

CALL [<address>]

where: <address> is the starting address where user program subroutine
execution begins.

The CALL conmand al l ows the user to execute a user program subroutine.
Execution starts at the current program counter (PC) address |ocation ,

unl ess a starting address is specified. Two extra bytes are placed onto
the stack before the return frominterrupt (RTlI) is issued so that the
first unmatched return from subroutine (RTS) encountered will return
control back to the nonitor program Thus any user program subroutine

can be called and executed via the nonitor program Program execution
continues until a breakpoint encountered, or the MONI TOR reset switch S1 is
activated (pressed).

EXAMPLE PROGRAM CALL, G AND P COWAND EXAMPLES

>ASM 0200 0206 STX $FFFF
>NOP
0200 STX $FFF 01
>LDAA #44 0207 STX $FFFF
86 44 >NOP
0202 STX $FFFF 01
>STAA 07FC 0208 STX $FFFF
B7 07 FC >RTS
0205 STX $FFFF 39
>NOP 0209 STX SFFFF
01 >(CTRL) A
EXAMPLE DESCRI PTI ON
>CALL 0200 Execut e program subrouti ne.

P- 0200 Y-DEFE X- FAFF A-44 B-FE C- DO S-004A Di spl ays status of
registers at tine RTS
encountered (except P register
contents).

GO

G [<addr ess>]

where: <address> is the starting address where user program execution
(free run in real tine). The user may optionally specify a starting
address where execution is to begin. Execution starts at the current
program counter (PC) address |location, unless a starting address is
speci fied. Program execution continues until a breakpoint us
encountered, or the MONITOR reset switch S1 is activated (pressed).

NOTE

Refer to exanpl e program shown and insert breakpoints at
| ocations $0205 and $0207 for the followi ng G conmand exanpl e.

EXAMPLE DESCRI PTI ON

>$0200 Begi n program execution at PC
address | ocati on 0200.

P- 0205 Y-0000- X-00CD A-44 B-FB C-DO S-004A Br eakpoi nt encountered at
0205.

HELP

The HELP conmmand enabl es the user avail able MONI TOR conmand information to
be di spl ayed on the term nal CRT for quick reference purposes.

LOAD
LQAD <Host downl oad command>
LOAD <T>

where: <host downl oad conmand> downl oad S-records to MONI TOR via host port.

<T> downl oad S-records to MONI TOR vi a term nal
port.

The LQAD conmmand noves (downl oads) object data in S-record format from an
external host conputer to MONITOR. As the MONI TOR nonitor processes only valid
S-record data, it is possible for the nonitor to hang up during a | oad operation.
If an S-record starting address points to and invalid nmenory | ocation, the

i nval i d address nmessage "error addr xxxx" is displayed on the Term nal CRT (XXxXX
= invalid address).

EXAMPLES DESCRI PTI ON
>LOAD T MONI TOR downl oad command (via term nal port)

You can now us your PC Terminal programto send a file to the board.

MEMORY DISPLAY - MD

MD [<addressl> [<address2>]]
where: <address1> Menory starting address (optional).
[<addr ess2>] Menory endi ng address (optional).

The MD conmand al l ows the user to display a block of user nenory

begi nning at addressl and continuing to address2. |If address2 is not
entered, 9 lines of 16 bytes are displayed begi nning at addressl. |If
addressl is greater than address2, the display will default to the first
address. If no addresses are specified, 9 lines of 16 bytes are

di spl ayed near the last menory | ocation accessed.

EXAMPLES

>NMD

F7D0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F7E0O AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F7FO AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F800 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F810 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F820 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F830 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F840 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
F850 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
>

>MD 0230 0220

0230 FFFFFFFFFF FF FF FF FF FF FF FF FF FF FF FF
>

>MD 0200 0220
0200 FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0210 FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0220 FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MEMORY MODIFY - MM

MM [<addr ess>]

CAUTI ON - Caution should be observed when nodi fyi ng EEPROM | ocat i ons.
MONI TOR MCU CONFI G regi ster ROMON bit is cleared to disable MU
i nternal ROM

where: <address> is the nenory |ocation at which to start display/nodify.

The MM conmand al l ows the user to exam ne/nodify contents in user nenory
at specified locations in an interactive manner. Once entered, the MM
command has several subnodes of operation that all ow nodification and
verification of data. The follow ng subconmands are recogni zed.

CTRL J or (Space Bar) Exam ne/ nodi fy next | ocation.

CTRL Hor A Exam ne/ nmodi fy previous | ocation.

/ Exam ne/ nodi fy same | ocati on.

RETURN Term nate MM operati on.

0] Conmput e branch instruction relative
of f set.

If an invalid address is specified, the invalid address nmessage "rom' is
di spl ayed on the term nal CRT>

EXAMPLES DESCRI PTI ON

>MM 0700 Di spl ay menory | ocati on 0700.

0700 44 66/ Change data at 0700 and re-exam ne | ocati on.
0700 66 55A Change data at 0700 and backup one | ocation.
06FF FF AA(RETURN) Change data at O06FF and term nate MM operati on.
>W 013C Di spl ay nmenory | ocati on.

013C F7 C18EQ0 51 Conpute offset, result = $51.

013C F7

>MM 0200 Exam ne | ocati on $0200.

0200 55 80 C2 00 CE C4 Exam ne next location(s) using (Space Bar).

MOVE

MOVE <addressl1l> <address2> [<dest >]

where: <address1> Menory starting address.
<addr ess2> Menory endi ng address.
[<dest >] Destination starting address (optional).

The MOVE conmmand al |l ows the user to copy/nove nmenory to new menory
location. |If the destination is not specified, the bl ock of data
residing fromaddressl to address2 will be noved up one byte. Using the
MOVE command on EEPROM | ocations will program EPROM cel | s.

The MOVE conmand is useful when programm ng EEPROM As an exanmple, a
programis created in user RAM using the assenbl e, debugged using the
nmoni tor, and then programred i nto EEPROM wi th t he MOVE conmand.

No messages will be displayed on the term nal CRT upon conpletion of the
copy/ move operation, only the pronpt is displayed.

CAUTI ON

Caution shoul d be observed when noving data i nto EEPROM | ocati ons. MONI TOR
MCU CONFI G regi ster ROMON bit is cleared to disable MCU internal ROM

Exampl e Descri ption
>MOVE EOO0O0 E7FF 0200 Move data from | ocati ons $E000- SE7FF to

| ocati ons $0200- $09FF.
>

PROCEED

P
This command is used to proceed or continue program execution w thout
havi ng to renove assi gned breakpoints. This command is used to bypass
assigned breakpoints in a programexecuted by the G comrand.
NOTE

Refer to exanple program show for the follow ng P conmand
exanpl e. Breakpoints have been inserted at |ocations $0205 and $0207

EXAVPLE DESCRI PTI ON
>G 0200 Start execution at 0200.
P- 0205 Y-7982 X-FFOO A-44 B-70 C- DO S-004A Br eakpoi nt encountered at
> 0205.
>p Cont i nue execution.

P- 0207 Y-7982 X-FFOO A-44 B-70 C- Q0 S-004A Br eakpoi nt encountered at
0207
>

REGISTER MODIFY - RM

RM[p,,Xx, a,b,c,s]

The RM conmand is used to nodify the MCU program counter (P), Y index
(YY), Xindex (X), A acculmulator (A), B accunulator (B), C accunul ator
(Q, and stack pointer (S) register contents.

EXAMPLE DESCRI PTI ON
>RM Di splay P register contents.
P- 0200 Y-798 X-FFOO A-44 B-70 G Q0 S-0054
P- 0207 0220 Modify P register contents.
>
>RM X Di splay X register contents.
P- C007 Y-7982 X-FFOO A-44 B-70 C- Q0 S-0054
X- FFO0 0220 Modi fy X regi ster contents.
>
>RM Di splay P register contents.
P- 0220 YODEFE X-0220 A-DF B-DE C-DO S-0054
P- 0220 (SPACE BAR) Di spl ay remai ni ng registers.

Y- DEFE (SPACE BAR)

X- 0220 (SPACE BAR)

A- DF (SPACE BAR)

B- DE (SPACE BAR)

C- DO (SPACE BAR

S- 0054 SPACE BAR) (SPACE BAR) entered foll ow ng
stack pointer display wll

term nate RM conmmand.

TRACE-T
T [<n>]

where: <n> is the nunber (in hexadecinmal, $1-FF nmax.) of instructions to
execute.

The T command allows the user to nonitor program execution on an

i nstruction-by-instruction basis. The user nay optionally execute
several instructions at a tinme by entering a count value (up to $FF).
Execution starts at the current programcounter (PC). The PC display
with the event nmessage is of the next instruction to be executed. The
trace command operates by setting the OC5 interrupt to time out after
the first cycle of the first opcode fetched.

(I'nstall JP13 on CVD11A Board to connect OC5 to XIRQ for Trace to operate)
EXAMPLES DESCRI PTI ON

>T SI NGLE TRACE

Op- 86

P- 0202 Y-DEFE X- FFFF A-44 B-00 C-00 S-004B
>

>T 2 MULTI PLE TRACE (2)

Op- B7
P-0205 Y-DEFE X- FFFF A-44 B-00 C-00 S-004B

Op- 01
P-0206 Y-DEFE X- FFFF A-44 B-00 C-00 S-004B
>

TRANSPARENT MODE - TM

™
The TM connects the MONI TOR host port to the term nal port, which allows
di rect communi cation between the term nal and the host conmputer. All
I/ O between the ports are ignored by the MONITOR until the exit character is
entered fromthe term nal.
The TM subcommands are as fol |l ows:

(CTRL)A Exit fromtransparent node
(CTRL)B Send break to host conputer.

EXAVPLE DESCRI PTI ON
>TM Enter transparent node.
Host conputer input
.(CTRL)A Task conpl eted. Enter exit conmand.
> Exit transparent node.
Refer to the downl oadi ng procedures at the end of this chapter for

additional information pertaining to the use of the TM comrand.
Verify

VERIFY

VERI FY <T>
where: <host downl oad conmand> conpare nmenory to host port downl oad
dat a.
<T> conpare nmenory to term nal port

downl oad dat a.

The VERIFY command is simlar to the LOAD command except that the VER FY
command instructs the MONI TOR to conpare the downl oaded S-record data to the
data stored in nmenory.

EXAMPLES DESCRI PTI ON
>VERI FY cat trial.out Enter verify conmand.
cat trial.out
done Verification conpleted.
>
>VERI FY cat trial.out Enter verify conmand.

cat trial.out
M smat ch encount er ed.

error addr EOO0O Error message displaying first byte
address.

Refer to the downl oadi ng procedures at the end of this chapter for
additional information pertaining to the use of the LOAD conmand.

ASSEMBLY / DISASSEMBLY PROCEDURES

The assenbl er/di sassenbler is an interactive assenbler/editor. Each
source line is converted into the proper machine | anguage code and is
stored in nmenory overwiting previous data on a line-by-line basis at
the tine of entry. in order to display an instruction, the machi ne code
i s disassenbl ed and the instructi on menoni ¢ and operands are di spl ayed.
Al valid opcodes are converted to assenbly | anguage nnenocs. All

i nval i d opcodes are displayed on the termnal CRT as "ILLOP".

The syntax rules for the assenbler are as follows: (a.) Al nunerica
val ues are assunmed to be hexadecimal. Therefore no base designators
(e,09,, $ = hex, %= binary, etc.) are allowed. (b.0 Operands nust be
separated by one or nore space or tab characters. (c.) Any characters
after a valid menonic and associ ated operands are assuned to be
comments and are ignored.

Addr essi ng nodes are designated as follows: (a.) Imedi ate addressing
is designated by preceding the address with a # sign. (b.) Index
addressing is designated by a comma. The comma nust be preceded a one
byte relative offset (even if the offset is 00), and the comma nust be
followed by an X or Y designating which index register to use (e.g.
LDAA 00,X). (c.) Direct and extending addressing is specified by the
| ength of the address operand (1 or 2 digits specifies direct, 3 Or 4
digits specifies extended). Extended addressing can be forced by
paddi ng the address operand with | eading zeros. (d.) Relative offsets
for branch instructions are conputed by the assenbler. Therefore the
valid operand for any branch instruction is the branch-if-true address,
not the relative offset.

Assenbl er/ di sassenbl er subconmands are as follows. |[If the assenbler
directs an error in the new source line, the assenbler will output an
error nmessage and then reopen the same address | ocation

/ Assenbl e the current line and then di sassenble the sanme
address | ocati on.

N Assenbl e the current line and then di sassenble the
previ ous sequential address |ocation

(RETURN) Assenbl e the current |ine and then di sassenbl e t he next
opcode address.

(CTRL) J Assenble the current line. |If there isn't a newline to
assenbl e, then di sassenble the next sequential address
| ocation. O herw se, disassenble the next opcode
address.

(CTRL) A Exit the assenbl er node of operation

VWhen a new source line is assenbles, the assenbler overwites what was
previously in nmenmory. |If now new source line is subnmitted, or if there
is an error in the source line, then the contents of nmenory remain
unchanged. Each of the instruction pairs Arithnetic Shift Left

(ASL)/ Logi cal shift Left (LSL) have the same opcode, so disassenbly

al ways di splays the ASL menonic. |If the assenbler tries to assenble at
an address that is not in RAM an invalid address nessage "rom xxx" is

di spl ayed on the term nal CRT (xxxx = invalid address).

DOWNLOADING PROCEDURES

This portion of text describes the downl oadi ng procedures. The

downl oadi ng operati on enables the user to transfer information froma
host conputer to the MONI TOR (or target system nenory) using the LOAD
command. The VERIFY command is used to conpare the S-record data to
menory dat a.

Speci fi c downl oadi ng procedures are described enabling the user to

| BM Personal Computer (PC) host conputer system Downl oadi ng

operations are acconplished utilizing the TM and LOAD conmands. The T™M
(Transport Mdde) command connects the MONI TOR host port to the termnal

port, which allows direct conmunication between the terni nal and host

conputer. Al 1/0 between the ports are ignored by the MONITOR until the

exit command (CTRL)A is entered fromthe termnal. The LOAD command

noves data information in S-record format from an external host computer to the
MONI TOR user RAM

The foll owi ng pages provi de exanpl es and descriptions of how to perform
downl oadi ng operations in conjunction with an 1BM PC host conputer.

Prior to perform ng any | BM PC operation, ensure that both |IBM PC and
MONI TOR baud rates are identical.

NOTE

IBMPC to MONI TOR i nterconnection is acconplished by a single RS-232C cable
assenbly. This cable is connected to the MONITOR term nal 1/0O port
connector COML for downl oadi ng operations.

To performthe 1BM PC to MONI TOR downl oadi ng procedure, performn observe the
fol | owi ng:

EXAMPLE DESCRI PTI ON
CKERM T | BM PC prompt. Enter KERM T
| BMPC Kermt-M VX XX pr ogr am
Type ? for help
Kerm t - MS>SET BAUD 9600 Set 1 BM PC baud rate.
Ker m t - M5>- CONNECT Connect |1 BM PC to MONI TOR

[Connecting to host, type Control-] Cto return to PC

(RETURN)

>LOAD T MONI TOR downl oad command (via term nal
port) entered.

(CTRL)]C

Ker m t - M5>PUSH

The |1 BM Personal Conputer DOS
Version X XX (C) Copyright IBM Corp 1981, 1982, 1983

CTYPE (File Nane) > COML Motorola S-record fil e nane.

CEXIT S-record downl oadi ng conpl et ed.

Ker m t - M5>CONNECT Return to nonitor BUFFALO program

>(CTRL)] C
Kermt-NVE>EXIT Exit Kermt program

INTERRUPT VECTORS

Interrupt vectors residing in MCU internal Rom are accessible as
follows. Each vector is assigned a three byte field residing in
MONI TOR nenory nmap | ocations $0000-$0100. This is where the nonitor
program expects the MCU RAMto reside. Each vector points to a
three byte field which is used as a junp table to the vector
service routine. The following Table lists the interrupt vectors
and associ ated three byte field.

Interrupt Vector Junp Table

| NTERRUPT VECTCOR FI ELD
Serial comunications Interface (SCl) $00C4- $00C6
Serial Peripheral Interface (SPI) $00C7- $00C9
Pul se Accumul ator | nput Edge $00CA- $00CC
Pul se Accumul ator Overfl ow $00CD- $00CF
Ti mer Overflow $00DO- $00D2
Ti mer Qutput Conpare 5 $00D3- $00D5
Ti mer Qutput Conpare 4 $00D6- $00D8
Ti mer Qutput Conpare 3 $00D9- $00DB
Ti mer Qutput Conpare 2 $00DC- $00DE
Timer Qutput Conpare 1 $00DF- $00E1
Tinmer |nput Capture 3 $00E2- $00E4
Timer |nput Capture 2 $O00E5- $00E7
Timer Input Capture 1 $00E8- $00EA
Real Tine Interrupt $00EB- $00ED
I RQ $00EE- $00FO
Xl RQ $00F1- $00F3
Software Interrupt (SW) $00F4- $00F6
Ill egal Opcode $00F7- $00F9
Conput er Operating Properly (COP) $00FA- $00FC
d ock Monitor $00FD- $00FF

To use vectors specified in the table, the user nust insert a
junp extended opcode in the byte field of the vector required.
For exanple, for the I1RQ vector, the following is perfornmed:

a. Place $7E (JMP) at |ocation $00EE.
b. Place IRQ service routine address at |ocations $00EF and $00FO.

$00EE 7E 80 00 JWP | RQ SERVI CE

UTILITY SUBROUTINES

Several subroutines exist that are available for performng 1/0
tasks. A junp table has been set up in ROMdirectly beneath the
i nterrupt vectors. To use these subroutines, execute a junp to
subroutine (JSR) conmand to the appropriate entry in the junp
table. By default, all I/O performed with these routines are
sent to the termnal port. Redirection of the I/O port is

achi eved by placing the specified value (O=SClI, 1=ACIA)i nto RAM
| ocati on | CDEV.

Uility subroutines available to the user are as foll ows:

UPCASE If character in accurmulator A is |ower case al pha,
convert to upper case.

WCHEK Test character in accunulator A and return with Z
bit set if character is whitespace (space, comm,
tab) .

DCHEK Test character in accunulator A and return with Z

bit set if character is delimter (carriage return
or whitespace).

INIT Initialize I/0O device
I NPUT Read 1/ O devi ce
QUTPUT Wite |/0O device.

QUTLHLF Convert |left nibble of accunulator A contents to
ASCI| and output to term nal port.

QUTRHLF Convert right nibble of accunulator A contents to
ASCI| and output to term nal port.

QUTA Qut put accurul ator A ASCI|I character.

QUTI BYT Convert binary byte at address in index register X
to two ASCII characters and output. Returns
address in index register X pointing to next byte.

QUTI BSP Convert binary byte at address in index register X
to two ASCII characters and output foll owed by a
space. Returns address in index register

QUT2BSP Convert two consecutive binary bytes starting at
address in index register X to four ASC
characters and output followed by a space.
Returns address in index register X pointing to

next byte.

QUTCCRLF Qutput ASCII carriage return followed by a line

f eed.

QUTSTRG Qutput string of ASCI1 bytes pointed to by address

in index register X until character is na end of
transni ssi on ($04).

QUTSTRGO Sane as OQUTSTRG except |eading carriage return

I NCHAR

and line feed is skipped.

I nput ASCI | character to accunul ator A and echo
back. This routine |oops until character is
actual ly received.

Uility junp subroutines for performng I/O tasks are shown

bel ow.

These subroutines are in ROM and are programmed as junps.

To use the junp subroutine, execute a JSR to the applicable
address shown bel ow.

$FFAO
$FFA3
$FFAG
$FFA9
$FFAC
$FFAF
$FFB2
$FFB5
$FFB8
$FFBB

$FFBE

$FFC

$FFC4
$FFC7
$FFCA

$FFCD

JwP

JwP

JwP

JwP

JwP

UPCASE Convert character to uppercase

WCHEK Test character for whitespace

DCHEK Check character for delimter

INIT Initialize I/0O device

I NPUT Read 1/ 0O device

QUTPUT Wite 1/0O device

QUTLHLF Convert left nibble to ASCII and out put

QUTRHLF Convert right nibble to ASCI1 and out put

QUTA Qut put ASCI | character

QUTI BYT Convert binary byte to 2 ASCI
characters and out put

QUT1BSP Convert binary byte to 2 ASCI
characters and output foll owed

by space

QUT2BSP Convert 2 consecutive binary bytes to 4

ASCI | characters and out put
foll owed by space

QUTCRLF Qut put ASCIIl carriage return foll owed by
line feed

QUTSTRG Qut put ASCIl string until end of
transni ssi on ($04)

QUTSTRGO Sanme as QUTSTRG except | eading carriage

return and line fees is skipped
I NCHAR I nput ASCI | character and echo back

S-RECORD INFORMATION

The Motorola S-record format was devi sed for the purpose of encoding
prograns or data files in a printable format for transportation between
conputer systens. This transportation process can therefore be

nmoni tored and the S-records can be easily edited.

S-RECORD CONTENT

VWhen observed, S-records are essentially character strings nade of
several fields which identify the record type, record | ength, menory
address, code/data, and checksum Each byte of binary data is encoded
as a 2-character hexadeci mal nunber: the first character representing
the high-order 4 bits, and the second the |oworder 4 bits of the byte.

Five fields which conprom se an S-record are shown bel ow

TYPE RECORD LENGTH ADDRESS CODE/ DATA CHECKSUM

where the fields are conposed as foll ows:
PRI NTABLE

FI ELD CHARACTERS CONTENTS

Type 2 S-record type - S0, S1, etc.

Record 2 Character pair count in the record,

| ength excluding the type and record | ength.

Addr ess 4,6, 2-, 3-, or 4-byte address at which

or 8 the data field is to be | oaded into
nenory.

Code/ dat a 0-2n FromO to n bytes of executabl e code,
menory | oadabl e data, or descriptive
information. For conpatibility with

tel etypewiters, sone prograns may
[imt the nunber of bytes to as few as
28 (56 printable characters in the S-
record.

Checksum 2 Least significant byte of the one's

conpl ement of the sum of the val ues
represented by the pairs of
characters making up the record

| engt h, address, and the code/data
fields.

Each record may be termnated with a CR/LF/ NULL. Additionally, an S-
record may have an initial field to accormpdate other data such as line
nunbers generated by sone tine-sharing systens.

Accuracy of transmission is ensured by the record I ength (byte count)
and checksum fi el ds.

S-RECORD TYPES

Ei ght types of S-records have been defined to accommpdate the severa
needs of the encoding, transportation, and decodi ng functions. The
various Mdtorola upl oad, downl oad, and other record transportation
control prograns, as well as cross assenblers, linkers, and other file-
creating or debugging progranms, utilize only those S-records which serve
t he purpose of the program for specific information on which S-records
are supported by a particular program the user manual for that program
nmust be consul t ed.

NOTE

The MONI TOR nonitor supports only the S1 and S9 records. Al data before
the first S1 record is ignored. Thereafter, all records nust be Sl type
until the S9 record term nates data transfer

An S-record format may contain the follow ng record types:

SO Header record for each block of S-records. The code/data
field may contain any descriptive information identifying
the follow ng block of S-records. The address field is
normal |y zeroes.

S1 Code/ data record and the 2-byte address at which the
code/data is to reside

S2- S8 Term nation record for a block of Sl records. Address
fields may optionally contain the 2-byte address of the
instruction to which control is to be passed. If not

specified, the first entry point specification
encountered in the input will be used. There is no
code/data field.

Only one term nation record is used for each block of S-records.
Normal Iy, only one header record is used, although it is possible for
mul ti pl e header records to occur

S-RECORD CREATION

S-record format prograns na be produce by several dump utilities,
debuggers, or several cross assenblers or cross linkers. Severa
prograns are available for downloading a file in S-record format from a
host systemto an 8-bit or 16-bit m croprocessor-based system

S- RECORD EXAMPLE
Shown below is a typical S-record format, as printed or displayed:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492

S9030000FC

The above format consists of an SO header record, four S1 code/data
records, and an S9 term nation record.

The SO header record is conprised of the follow ng character pairs:
SO S-record type SO0, indicating a header record.

06 Hexadeci mal 06 (decimal 06), indicating six character pairs
(or ASCI1 bytes) follow.

00 Four -character 2-byte address field, zeroes.

44 ASCIl H D, and R - "HDR'.

1B Checksum of SO record.
The first S1 code/data record is explained as foll ows:

S1 S-record type S1, indicating a code/data record to be
| oaded/verified at a 2-byte address.

13 Hexadeci mal 13 (deci mal 19), indicating 19 character pairs,
representing 19 bytes of binary data, follow.

00 Four -character 2-byte address field; hexadeci mal address 0000,
00 i ndi cates | ocation where the following data is to be | oaded

The next 16 character pairs are the ASCII bytes of the actual program
code/data. In this assenbly |anguage exanpl e, the hexadeci nal opcodes
of the programare witten in sequence in the code/data fields of the S1
records;

OPCCDE I NSTRUCTI ON
28 5F BHCC $0161
24 5F BCC $0163
22 12 BH $0118
22 6A BH $0172
00 04 24 BRSET 0, $04, $012F
29 00 BHCS $010D
08 23 7C BRSET 4, $23, $018C

(Bal ance of this code is continued in the code/data fields
of the remaining S1 records, and stored in nenory |ocation
0010, etc..)

2A Checksum of the first S1 record

The second and third S1 code/data records each al so contain $13 (19)
character pairs and are ended with checksuns 13 and 51, respectively.
The fourth S1 code/data record contains 07 character paris and has a
checksum of 92.

The S9 termination record is explained as foll ows:

S9 S-record type S9, indicating a term nation record.

03 Hexadeci mal 03, indicating three character pairs (3 bytes)
fol | ow

00 Four -character 2-byte address field, zeroes.

00

FC Checksum of S9 record

Each printable character in an S-record is encoded i n hexadeci mal (ASClI
in this exanmple) representation of the binary bits which are actually
transmtted. For exanple, the first Sl record above is sent as shown

bel ow.
type | ength addr ess code/ dat a checksum
S 1 1 3 0O 0O 0 o 2 8 5 F 2 A

53 31 31 33 30 30 30 30 32 38 35 46 32 41

